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ABSTRACT

Evolutionary programming is a relatively new problem solving approach in the

field of computer science. It attempts to model the processes of natural selection and

evolution to solve complex problems. This technique is very powerful because it can be

applied to a wide range of problems, and can find solutions that other more traditional

techniques cannot.

This research attempts to augment the methodology of an evolutionary

programming approach with two new features: (1) dominant and recessive traits and (2)

intron and exon regions. These features form the basis of a specialized approach for

evolutionary programming which might be able to be applied to new problem areas

where evolutionary programming usually performs poorly.

This specialized approach is applied to the well known problem of a series

expansion, so that the results are easily compared to a known solution, and that the

influence of these additional mechanisms on the population of solutions can be studied.

Results from implementing the new mechanisms individually and together are presented,

and compared with a baseline evolutionary programming implementation.
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I. INTRODUCTION

A. PURPOSE

The idea of imbuing computers with life-like features, such as intelligence, is not

a new idea. Early computer scientists, like Alan Turing, asked such questions as, "Can

machines think?" He never did answer that question, but he did propose that an

intelligent machine would have to be a learning machine and that evolution could be used

as an intelligent learning process [Ref 1]. As a result of his work, and that of other

pioneering computer scientists, the link between computation and "life" found a firm

foundation from which sprouted the fields of Artificial Intelligence (AI) and Evolutionary

Computation (EC).

There are many arguments for what the real definition and underlying purpose of

"evolution" are, but one common theme among the arguments is that evolution is

responsible for adaptations. In trying to develop models for how adaptation occurs in

natural organisms and importing those models to computers, John Holland created

Genetic Algorithms (GAs). Since their introduction in the 1960's, GAs have been

applied to solve pressing computational problems because they can be used to search for

solutions to a specific problem among an intractable number of possibilities [Ref 2].

Genetic Programming (GP) is one of several techniques stemming from GAs.

While GP uses GAs in its implementation, GP differs from a GA because it does not

attempt to solve a problem directly. Instead of building an evolutionary program to solve

the problem, GP uses GAs to automatically generate programs that will help the

computer to solve a problem without specifically being programmed.

This thesis will describe and attempt to implement a specialized GA using a GP

approach. This specialized GA incorporates certain specific genetic characteristics and

mechanisms that occur in complex biological organisms in an effort to create a self-

mutating algorithm that can be applied to adaptive applications.

B. RESEARCH QUESTIONS

It is necessary to clearly establish which underlying biological/genetic

mechanisms are used in this specialized GA and enumerate the benefits gained by



choosing those mechanisms. The general characteristics of these mechanisms must be

described unambiguously within an algorithm in order for those characteristics to map to

a computer based analogue population.

Assuming that a specialized GA has been developed, it is necessary to determine

whether or not the application of this specialized GA achieves results comparable to

traditional GAs when applied to similar problems. If the new approach works, but is

preemptively slow to complete, than its usefulness, outside of being a novel approach, is

limited. However, if this specialized GA can solve problems that traditional GAs cannot,

then it could maintain legitimacy as a computationally viable problem solving method.

Because this new approach is a GA, this thesis addresses two fundamental

questions pertinent to all GAs: Which initial population size and probability of mutation

should be used, and how many generations must be run before reliable results are

produced? The GP portion of the implementation also requires that the problem to be

solved be broken down into its appropriate functions and terminals.

C. THESIS OUTLINE

Upon completion of the introduction, but prior to answering the research

questions posed, it is necessary to thoroughly explain some fundamental concepts in

molecular genetics and evolutionary computation. These explanations are presented in

Chapter II and are needed to understand the details of the computational analogues this

thesis develops. Additionally, there has been work completed in related fields that has

had either direct or indirect influence on the formation of this new idea. These seminal

works are discussed and summarized in detail in Chapter III. The combination of the

background information from Chapter II and the overview of previous works from

Chapter III set the foundation for describing why this thesis' research questions are

pertinent and how they will be answered (Chapters IV and V, respectively).

The experiment was run on a modified version of the GPSYS (pronounced

"gipsys") software [Ref 3]. The modifications made are covered in Chapter V. A

statistical analysis was done on the results, the outcome of which is given in Chapter VI.

Chapter VII summarizes the important contributions of this thesis.



D. EXPECTED BENEFITS OF THIS THESIS

If it is possible to exhibit evolutionary/adaptive traits by using this specialized

GA, then it would seem possible to address a larger spectrum of problems than is possible

with traditional genetic algorithms. If this specialized GA works without loss of

optimization, then it is possible that techniques discovered during this research could be

used to develop adaptive applications in the future. If a larger class of problems can be

addressed, the genetic algorithms resulting from this work might be successfully applied

where such were not previously possible. The benefits of such self-adapting algorithms

to the DoD are obvious and widespread.





II. BACKGROUND

A. AN OVERVIEW OF MOLECULAR GENETICS

In 1839, two German microscopists, Matthias Schleiden and Theodor Schwann

postulated that all organisms were constructed from fundamental units called cells, and

that all cells arise from other cells. Without having witnessed the mechanism of mitosis,

or being able to see inside the nucleus, they accurately determined that the cell is the

fundamental unit of all organisms [Ref 4].

In 1858, Charles Darwin and Alfred Wallace published their theory proposing that

evolution in organisms occur because of natural selection. They stated that various forms

of life are not constant but are continually giving rise to slightly different forms, some of

which are adapted to survive and multiply more effectively. At that time, they did not

know the origin of this continuous variation, but they realized that these new

characteristics had to persist in progeny if such variations were to form the basis of

evolution [Ref 5].

In 1865, Gregor Mendel laid the precursor to the rules of heredity when he

postulated that various traits are controlled by pairs of factors. Three years later, Ernest

Haeckel postulated that the nucleus is responsible for heredity. It was not until the early

1900's and the work of Hugo De Vries that all three biologists were proven correct when

the pairs of chromosomes found in the cell nucleus were discovered to be the active

factors responsible for heredity. Although Darwin and Wallace's theory of evolution was

to become orthodox among biologists by the late 1800's, it was not until the acceptance

of genetic theory that evolution theory would be embraced by the general world and other

scientific communities [Ref 6].

In 1868, a Swiss biologist named Friedrich Miescher first identified

deoxyribonucleic acid (DNA). It was not until 1944 with the work of Oswald Avery,

Colin MacLeod, and Maclyn McCarty that it was believed that the DNA found within the

genes was responsible for the physical transmission of hereditary traits from generation to

generation. Alfred Hershey and Martha Chases proved DNA was the actual genetic

material in 1952. Since then, subsequent advances in molecular genetics, population

genetics, microscopy and molecular biology have allowed scientists to better hypothesize

how organisms are able to evolve [Ref 7].



1. A Molecular Genetics Primer

The following discussion of molecular genetics utilizes terminology familiar to

anyone knowledgeable of fundamental cell biology. Appendix A provides a brief review

of cell biology for the reader who needs to familiarize himself with these terms.

In order to be absolutely clear about the genetic mechanisms that are being

mapped to a computational analogue, it is necessary to ensure that there is a common,

accepted understanding of what these mechanisms are and how they work. It is also

necessary to introduce some genetic terminology that may not be familiar to most

readers. Therefore, this section describes the basic structures and functions of genes.

Every living organism is created from a complete set of instructions called a

genome. This genome contains the master blueprint for all cellular structures and

functions within the organism for the duration of its life. The genome is defined by the

DNA, which when combined with protein molecules, called histones, form chromatin

fiber. These fibers form structures known as chromosomes, which are found in the

nucleus of all non-somatic cells.

Many procaryotic organisms have single-stranded DNA. An organism with a

single DNA chain is called haploid. Many unicellar and all higher order organisms are

eucaryotic and have double-stranded, or double helical as it is more popularly known,

DNA. Organisms with double-stranded DNA are called diploid.

Each DNA molecule contains many genes, which are a specific sequence of

nucleotide bases found at a particular position, or locus, on the chromosome 1
. These

genes hold all the information necessary for constructing proteins and enzymes for the

biochemical reactions that are necessary to maintain life2 . DNA, however, does not

actually produce proteins. A single-stranded copy of the gene, called ribonucleic acid

(RNA), is created for that purpose in a process called transcription. This process is

similar to replication, except that an exact double-stranded copy of the entire DNA

molecule is not the end product. The RNA molecule is not only single-stranded, but also

1 There are different types of DNA found in a cell, such as nuclear and mitochondrial DNA. They both are

the templates for RNA and protein production, thus the exact differences will not be discussed. All

references to DNA will refer to nuclear DNA, although, in general, the mechanisms apply to both types.

2
It is more correct to say that each gene holds the relationships for a specific polypeptide. Often proteins

are made from several polypeptide chains, each of which is the product of a separate gene.



significantly shorter in length because it is a copy of only a portion of the DNA. This

RNA molecule leaves the nucleus and is used to create proteins in the cell's ribosomes 3
.

The RNA is interpreted and the protein is made by a process called translation.

DNA -> RNA -> protein

Transcription Translation

Figure 1 . The Flow of the Genetic Code

Not all sequences in DNA are eventually transcribed into RNA. In fact, the entire

DNA sequence of eucaryotic organisms is a mixture of these transcribed and

untranscribed regions. These untranslated, intervening DNA sequences are called

introns. The functional areas of DNA from which the RNA is transcribed are called

exons. Genes whose DNA is a complex mixture of introns and exons are referred to as

being split or discontinuous.

Proteins, made in the translation process, are polymers of amino acids, of which

there are twenty used in the synthesis of proteins (see Appendix B). The ribosomes are

able to retrieve the correct amino acid because each amino acid is encoded by a certain

sequence of nucleotide bases in the RNA strand, which is then placed in the protein being

constructed. This sequence consists of three bases and it is called a codon. Each codon

codes for a specific amino acid. Different codons that code for the same amino acid are

called synonyms (see Figure 2). What is commonly referred to as the "genetic code" is

the relation between the codons and the amino acids which they represent. This code is

nearly, but not absolutely, universal.

Alleles are alternative forms of a gene that can occupy a particular chromosomal

site. Whereas genes code a trait, such as eye color, alleles are different "settings" for the

trait, such as blue or hazel eyes4 . A gene is "expressed" when the information coded

within it is converted into structures present and operating within the cell. Whether

expressed or not, the particular set of genes contained in the organism's genome is called

3 There are several types of RNA. See Appendix B for clarification.

4 More precisely, the locus refers to the place on the chromosome where an allele resides. An allele is just

the bit of DNA at that place. A locus is a template for an allele. An allele is an instantiation of a locus.



the genotype. The genotype gives rise to the phenotype, which is the aggregate of

physical and mental characteristics of the organism, such as eye color, height, etc.
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Figure 2. The Genetic Code

Genes are arranged in a fixed, linear order. This order can change, but this is rare.

Movable DNA segments, called transposons, occassionally jump around chromosomes,

thus fundamentally altering the chromosomal structure. In addition to neatly moving

genes, transposons also scramble DNA, making deletions, inversions, and other

rearrangements. It is becoming clear that such changes are a critical feature of

chromosomal evolution. Because recombination and transposition generate new

combinations of genes, they enlarge the repertoire from which natural selection chooses.

Gene rearrangements also regulate DNA expression because gene location and

orientation may determine whether a gene is silent or active.



2. Population Genetics

Population genetics is the scientific discipline that is concerned with the genetic

basis of evolution. It studies the frequencies and fitness of genotypes in natural

populations. Evolution is the change in the frequencies of genotypes through time, with

the change possibly due to differences in fitness. Changes in genotype frequencies,

though, are not easily measured, because the time scale associated with the introduction

of most naturally occurring genetic variants is very long and are thus impossible to

directly observe. Mathematical models of evolution are used instead, and the behavior of

the model is compared to that of the natural population.

One important effect that population genetics has explained is that of dominant

alleles within the genotype on the evolution of the organism. The type of dominance the

allele exhibits determines how it affects the overall genotype and whether or not the allele

will be maintained in the population. Allele dominance explains why some mutations

can be sustained within the population, while others are not. Appendix C explains some

of these theories in more detail.

3. Some Biological Causes of Evolution

The fundamental causes of life and its subsequent evolution are still a matter of

speculation. Scientists still cannot answer the questions of why life formed or what

caused species to differentiate. They can compare DNA or protein sequences and apply

elements of statistical geometry to determine when the species diverged. They can offer

statistical arguments as to what happened to cause the changes, but the exact causes are

still unknown. Therefore, the following discussion is only a theory and, as with any

theory outside of mathematics, is potentially wrong. However, it is also emphasized that

this following theory is not trying to prove the causes of evolution in vivo, but to find

useful evolutionary and genetic mechanisms for which computational analogues can be

made.

Most genes of higher eucaryotes have, many introns. Lower eucaryotes have a

much higher proportion of continuous genes. Comparisons of the DNA sequences of

genes encoding proteins that are highly conserved in evolution suggest that introns were

present in ancestral genes and were lost during the evolution of organisms that have

become optimized for very rapid growth, such as bacteria. The presence of introns has



had an evolutionary effect, especially with regard to the development of complex

organisms [Ref 8].

Exons encode discrete functional units of proteins or can encode for the whole

protein. The former idea has been proven, which leads to the attractive hypothesis that

new proteins arose in evolution by the rearrangement of exons [Ref 9]. Shuffling exons

is a rapid and efficient means of generating novel genes because it preserves functional

units while allowing them to interact in new ways. Introns are regions where DNA can

break and recombine with no deleterious effects. Therefore, the presence of introns

increases genetic variation by allowing more discontinuity. The greater the discontinuity

of the DNA, the more exons are found in the DNA, and thus more possible combinations

of exons.

Since the developmental potential of an organism is determined by its genes,

DNA must necessarily mutate as organisms evolve. But evolutionary changes occur only

rarely. Since living cells require the correct functioning of thousands of proteins, each of

which could be damaged by a mutation at many different sites in the cell's gene, it is

clear that DNA sequences aimost always are passed on unchanged if progeny are to have

a good chance of survival.

Naturally occurring mutations include almost all conceivable changes in DNA
sequences (see Appendix B). Mutations that have only a subtle effect on a gene product,

such as temperature-sensitive mutations, are often the result of a simple switch of one

base for another. However, there are natural mutations thatdestroy the function of a gene

completely. These more drastic changes, called null mutations, include not only base

switches, the insertions and deletions of a base, but also extensive insertions and

deletions and even gross rearrangements of chromosome structure. Such changes might

be caused, for example, by the insertion of a transposon, which typically places many

thousands of bases of foreign DNA in the coding sequence of a gene, or by an aberrant

cellular recombination process.

One way to reduce the chances of a harmful mutation occuring is to increase the

area in which a mutation can occur that will either have no effect or at least not harm the

organism5 . Introns are usually extensive in length and account for about half of the total

5 Correction enzymes ensure that replication and recombination occur without error. Excluding radical

modifications of DNA brought about by outside factors such as radiation, DNA has a built-in repair

mechanisms.
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DNA molecule. Having such a large portion of inactive regions decreases the chance of a

harmful mutation occurring in an exon6 . Thus, the introns give additional protection

from harmful mutations.

Recombination is not accidental, but is instead an essential cellular process

catalyzed by enzymes which are made by the cell's ribosomes. Besides providing genetic

variation, recombination enzymes allow cells to retrieve sequences lost when DNA is

damaged. By switching specific segments within chromosomes, cells put dormant genes

into sites where they can be expressed, even creating new protein-coding regions (see

Appendix C).

Synonyms in the genetic code demonstrate the idea of degeneracy. If more than

one codon did not code for the same amino acid, then only twenty codons would

designate amino acids and the rest would be stop signals. The probability of mutating to

a chain termination signal would then be much greater, and chain-termination mutations

usually lead to inactive proteins. Substitutions of one amino acid for another are usually

relatively harmless. It also allows for the DNA base composition to vary over a wide

range without altering the amino acid sequence of the proteins encoded by the DNA.

Therefore, degeneracy allows mutations to occur while increasing the probability that the

mutation will not be deleterious. It also increases the variation of the genotype without

destroying necessary functions.

Double stranded DNA, as opposed to single stranded, allows for more variation in

an individual's genome, and hence the entire population. On a single stranded gene,

there might be n different alleles at a single locus, so the individuals in that population

can have n different genotypes resulting from differences at that locus. In a double

stranded gene, there are n homozygous combinations and n(n-I)/2 non-repetitive

heterozygous combinations7
.

Organisms with double stranded DNA also follow Mendel's law of dominance8
.

Dominant and recessive features provide an interesting dynamic within the population's

° This assumption is true if every nucleotide or base pair in the strand had equal probability of mutation.

There are examples of regions where mutation is more likely to occur (see Appendix B), but in the highly

accurate replication process, all points have an equal probability.

7 This is not taking into account combinations that would lead to non-viable individuals and so would never

naturally occur.

° This is a drastic simplification. Not all alleles are entirely dominant or entirely recessive. See Appendix

C for further explanation.
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genotype, allowing for increased complexity. The idea of dominant and recessive traits is

important in evolution because it often determines the viability of the individual in the

population and the environment. Those individuals exhibiting dominant traits are usually

said to be better adapted to the environment and thus are more likely to survive.

However, having dominance in one area does not mean the individual is the most fit in

the population, nor is it a guarantee that offspring will retain the trait.

In summary, introns, degeneracy within the genetic code, double-stranded DNA,

and dominance have all played a role in evolution. They have either acted to reduce the

deleterious effects of mutation or have acted to increase the complexity of DNA. These

in turn affect the possibilities of how a species can change over generations.

4. Biological Basis of Evolutionary Computation

Because evolution is, in effect, a method of searching among an enormous

number of possibilities for a "solution," it has inspired researchers trying to solve

computational problems. In biology, the large number of possibilities is the set of

possible genetic sequences, and the desired "solutions" are highly fit organisms. A

highly fit organism is one capable of surviving and reproducing in its environment. For

those computational problems that require programs to be adaptive—i.e., continuing to

perform well in a changing environment—evolution is capable of searching a constantly

changing set of possibilities. Furthermore, evolution is a massively parallel search

method: rather than working on one species at a time, evolution tests and changes

millions of species in parallel.

EC, which will be more thoroughly discussed in the next section, is the blanket

term used to describe the class of computer-based problem solving systems that use

computational models of known mechanisms of natural evolution as key elements in their

designs and implementations. All the systems simulate the evolution of individual

structures, within a population of structures, via the processes of selection, mutation and

recombination. Each individual in the population has some type of genetic material and

each receives a measure of its fitness in the environment based on some type of evalution

of that genetic material.

From the previous section, one can see that biologists have identified many

principles, from the genetic level and higher, which govern the evolution of living things.

At the highest level, the theory of natural selection governs the evolutionary adaption of
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the biological world. Natural selection operates on the organism through its performance

on one specific task—the production of offspring. In Darwin's words, it is "survival of

the fittest." Those individuals that are fittest in the environment are more likely to

survive, and thus propagate their genetic material. Individuals which reproduce are

chosen in the selection process. In the computational world, there are several ways to

accomplish selection, but usually the fitness is considered.

During the reproduction process, assuming reproduction is not asexual, some

genetic material is taken from one parent, and some from the other. Recombination can

occur either during gamete formation, from which the offspring will be subsequently

formed, or can occur directly to create the new individual. In EC, recombination is better

known as crossover, although even in biology, these terms are synonymous (see

Appendix B).

Computational mutation is generally done during the crossover procedure. It can

occur during gamete formation, the actual crossover, or both. It is generally a stochasitic

process, with each locus in the genetic material having a certain probability of being

mutated during the procedure. Mutations which occur outside the process of "being

born" are called "cosmic ray" mutations.

In summary, EC techniques maintain a population of structures, called

individuals, that evolve according to the rules of selection, recombination and mutation

specified by the user. Each individual in the population receives a measure of its fitness

in the environment. Reproduction usually focuses on highly fit individuals, thus using

their fitness information to keep their genetic material within the population.

Recombination and mutation, which perturb the genetic material during reproduction in

order to create new individuals, is a means to explore the fitness landscape and find more

solutions.

B. INTRODUCTION TO EVOLUTIONARY COMPUTATION

There are several main methods in the evolutionary computation field,

distinguished mainly by the types of structures that comprise the individuals in the

population. These differences determine the factors by which one individual may differ

from another, and thus the allowable genetic variation. Equally important differences

also exist in the genetic operators used to create offspring, as well as many of the
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selection procedures based on fitness and other parameters. The predominant styles are

Evolution Strategies (ES), Evolutionary Programming (EP), Genetic Algorithms (GA),

and Genetic Programming (GP).

These different styles, while representing true differences in approach, were each

developed by different and initially unrelated groups of people with little cross-

fertilization of ideas in the early days of development. It is a commonly held opinion that

even though more individuals have applied more than one of these approaches to solving

problems, the number of people who could be considered truly interdisciplinary is small.

The relationships and individual strengths and weaknesses of each of these styles are just

beginning to be understood [Ref 10].

ESs are frequently associated with engineering optimization problems. The

structures that undergo adaptation are typically sets of physically measurable objective

variables that are associated with similarly measurable strategy variables in an individual.

Fitness is determined by executing task specific routines and algorithms using objective

variables as parameters. Strategy variables control the way in which mutation varies each

objective variable during the production of new individuals. Recombination is usually

applied to both objective variables and strategy variables.

EP operates on a variety of representational structures, frequently real-valued

objective variables or finite state machines. The objective variables are arguments to task

specific routines and algorithms designed to solve a specific problem. Mutation is the

only genetic operator employed, with significant strategy built into the overall algorithm

to direct the mutation in a computationally beneficial direction.

GAs usually operate on fixed length character strings, often binary, as the

structure undergoing adaptation. Other representational structures are possible. Fitness

is determined by executing task specific routines and algorithms using an interpretation

of the character string as their parameters. Crossover is the principal genetic operator

employed, with mutation usually included as an operator of secondary importance.

GP is an offshoot of Genetic Algorithms in which the computer structures that

undergo adaptation are themselves computer programs. Specialized genetic operators are

used which generalize crossover and mutation for the computer programs undergoing

adaptation. Generally, the programs being evolved are represented as trees.
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C. GENETIC PROGRAMMING FUNDAMENTALS

John Koza developed GP in 1992, although he originally applied GAs to Lisp

expressions. Other languages have since implemented GP techniques, but they require

that the program be represented in a hierarchical structure (i.e., tree). Regardless of the

implementation, Koza says that there are six steps to solving a problem using GP. These

steps are choosing (1) the terminals, (2) the functions, (3) the control parameters, (4) the

termination criteria, (5) the fitness function, and determining (6) the program's

architecture. The functions are the internal nodes of the tree, while the terminals are the

leaves. The control parameters are similar to those in GAs: the population size, the

number of generations, and the probabilities of crossover and mutation. The termination

criteria is usually reached when a program is found that solves the given problem, or after

a certain number of generations. The fitness function is similar to that used in GAs. The

last step refers to defining the number of automatically defined functions (ADFs) [Ref

11].

Along with these six steps, Koza also defined the necessary conditions for

terminals and functions. These conditions must be chosen so that they are able to express

a solution to a given problem. This property is known as sufficiency. The second

property is that of closure, which is satisfied when each of the functions can accept as its

arguments any value or data type that might be returned by any function or be taken on

by any terminal. As long as this property is fulfilled, crossover is possible and the

offspring tree will be syntactically correct and executable. One method of maintaining

closure is to use a Strongly Typed Genetic Program (STGP). In a STGP, variables,

constants, arguments, and returned values can be of any data type with the provision that

the data type for each value is specified beforehand [Ref 12].

The use of ADFs in GP induce a divide-and-conquer strategy in which the

problem to be solved is decomposed into smaller sub-problems. The subproblems are

usually easier to solve and the results can be combined together to build the solution for

the original problem. In the case of the subproblems, their solutions are usually

subroutines of the whole program. In GP, these subroutines can be obtained by using

special subtrees having a fixed number of branches. This subtree can then be

encapsulated to act as a terminal for another program, because it returns a value that is

used by that node in evaluating its function.
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III. OVERVIEW OF PREVIOUS WORK

A. THE COMPILING GENETIC PROGRAMMING SYSTEM (CGPS)

Most GP approaches use an interpreter to execute the programs that are developed

from the provided problem specific language. The code segments in the population are

decoded at runtime by a virtual machine. However, interpreted code usually causes a

large overhead and executes much slower than compiled code. In 1993, Peter Nordin

created the Compiling Genetic Programming System (CGPS), which used the machine's

code as the programs in the population and eliminated the interpreter [Ref 13]. He used

the CGPS to make a classifier function that differentiates nouns and non-nouns of

Swedish words strictly by spelling. He compared the execution of the CGPS with that

of a combined neural network and interpreting GP system applied to the same problem.

The CGPS performed significantly better. The CGPS is now commercially available

through AIM Learning Systems™ as the Discipulus™ and Discipulus Pro™ programs,

which are GP/Simulated Annealing programs used to conduct computerized automatic

learning and learning/optimization tasks at the machine code level9 .

One other significant feature of Nordin' s work is that he used the C language. The

individuals in the population are machine code sequences resembling a standard C-

function (see Figure 3). Valid C-functions are put together at runtime directly in memory

by a GA.

The header in the function call gets its arguments from the stack. The footer

cleans up after the function is completed. The same header and footer are added at the

beginning of the initialization of each individual in the population. The mutation and

crossover operations are prevented from modifying these sections.

The return instruction forces the system to leave the function and return control to

the calling procedure. The placement of the return instruction is allowed to vary if the

system is implemented on a Complex Instruction Set Computer (CISC), because CISC

computers have variable length instructions. The return instruction is given a range in

which it can be placed if run on that system. The CGPS, however, was tested on a

limited Sun-4 instruction set with programs of fixed length.

" The author did not accertain what the differences are between the CGPS and the Discipulus
M

products.
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Instruction Instruction

Operator Operand

Figure 3. Generic Machine Code Function Structure

The instruction body is the actual program that evaluates the function. Two

classes of instructions are used. In the first class, instructions are performed between

registers or as unary functions. Instructions in the second class require a constant

operand to immediately follow the operator. The CPGS only uses two-register Sun-4

instructions limited to two addressing mode types; a total of twenty-four instructions

were used.

The individuals in the population are randomly generated and run through a GA
using steady-state tournament selection and a standard uniform crossover. Mutation can

work on the operator or, if it exists, the operand. If the operator is mutated, it can only be

changed to a member of the set of approved instructions. No jumps, illegal instructions

or loops are allowed.

For his experiments, the population size was varied between 20 and 4,000

individuals, with 40,000 individuals total being processed. The typical size of individuals

tested was 7, 12 and 28 instructions. The population was allowed to run through 21

training sets. He concluded that his population was able to learn the training set about as

quickly as the neural network 10
. The benefit of the CPGS in this instance is that it only

took one minute to train as compared to the neural network's 235 minutes. Individuals in

the CPGS also only needed approximately 50 bytes of memory as opposed to the neural

10 CPGS learned 86% of the words as compared to 89% for the neural network. On unknown words,

CPGS classified 72% correctly compared to the neural network's 69%.
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network's 450 bytes. He also concluded that smaller populations worked better than

larger ones.

B. THE GENETIC EVOLUTION OF MACHINE LANGUAGE SOFTWARE
SYSTEM (GEMS)

In 1995, Ronald L. Crepeau developed Genetic Evolution of Machine Language

Software (GEMS) in which he used a large set of generalized operators and instructions

vice problem specific ones. It was thought that a large generalized set of operators and

terminals would make the GP process inefficient. He wanted to determine if that

assumption was true 11 [Ref 14]. Unlike Nordin, though, his system did not go on to a

commercial implementation.

GEMS consisted of three parts: the microprocessor emulator, a pool of machine

language (ML) programs, and the Genetic Process Controller (the GPC). Like Nordin, he

decided to work at the machine level in order to preclude the need to compile. He wrote

an emulator for the Z80™ architecture, which is a 16-bit microprocessor with a large

instruction set, 64 Kilobyte addressing range, and input-output features. Included in the

emulation were seven, 8-bit wide registers, some of which could be combined to form 16-

bit registers, as well as Stack Pointer (SP), Program Counter (PC), and Flag (F) registers.

The individual instructions of pool members, i.e., the ML programs mentioned

above, were implemented using a C structure which defined the number of bytes in the

instruction and an array that held the actual instruction-. A pool member's set of

instructions were stored as an array of these structures. Memory contents were stored

within the pool member itself, with program memory and data memory segregated.

The GPC generated new pool members, linked them for execution within the

emulator, evaluated the fitness of pool members, and controlled the breeding, mutation

and survival of pool members. Pool members were pair-wise bred and could be bred one

or more times. A double crossover was used with preference given to the most fit of the

parents. Only one child was produced per crossover. Each offspring was evaluated, and

if it was found to be more fit than either of its parents, it subsequently replaced the

weaker parent in the pool. If it was not more fit than its parents, it did not survive.

1
' He also wanted to see the effects of adding memory.
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There were two types of mutations in GEMS. The first type of mutation replaced

a random amount of contiguous program and memory values in an offspring prior to its

fitness evaluation. The other type randomly and completely replaced a weak pool

member.

GEMS was applied was to the problem of generating an ML agent that in one run

would output the string "Hello World". The fitness of the individual was based on

outputting the correct string. Additional value was added if the ML agent could output

the correct string in the shortest amount of instructions.

Three benchmarks were tested for each run. Crepeau measured the number of

generations it took until a pool member first output the correct string, how many

generations passed until a correctly performing ML agent was stable within the pool, and

when the shortest agent in the pool was less than 100 instructions. Runs were not

normally terminated until all three benchmarks were reached, but there were cases when

ML agents of less than 100 instructions were not produced.

Pool size varied between 150 and 2000 members, each of which were run sixteen

times. For populations of less than 500 individuals, there was a significant standard

deviation, so for this particular problem, a larger population performed better. One

interesting conclusion he found was that the complexity of the problem appears to

increase linearly, vice combinatorially or exponentially when increasing the length of the

output string. Although there are specific issues resulting from the GEMS

implementation and the problem on which it was used, he proved that "agents of simple

functionality can be generated with a GP process that involves a large number of ML
operators and memory as implemented in GEMS" [Ref 15].

C. DIPLOIDY/DOMINANCE IN GENETIC SEARCH

Although not the first example of utilizing diploidy and dominance in a GA

approach, in [Ref 16], F. Green considers the diploid chromosome as two chromosomes

with one gene each. He used a 0-1 knapsack problem in order to see how the GA

performed on a problem with a changing global optima. He speculated that if a similar

environment repeatedly arose, diploidy could enable the species to rapidly re-express its

former fitness for that environment.

Individuals of the diploid population were represented as a C++ object based on

the Genitor GA [Ref 17]. The Genitor GA originally only worked on a haploid
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chromosome but was modified so that the initial population produced would replicate the

values from the first homologue into the second. Member functions for the class were

added to handle diploid fitness evaluation.

He based his dominance relationship on the enzyme production of some genes in

biological systems. A homozygous dominant and the heterozygote both exhibit the

dominant feature, but the homozygote actually produces more of the enzyme,

specifically, twice as much as the heterozygote. In his organisms, allele values are the

fitness values of the two strings on each gene in the corresponding chromosomes. These

fitness values represent the intermediate, or the enzyme, produced. These values

compete prior to producing the observed phenotype. Dominance is implemented by

mapping the two intermediate, or sub-phenotype, fitness values to the scalar fitness value

that will subsequently be used for selection. The mapping function, referred to as the

dominance function, simply chooses the maximum of the two values.

D. EXPLICITLY DEFINED INTRONS AND DESTRUCTIVE CROSSOVER

In [Ref 18], Peter Nordin, Frank Francone and Wolfgang Banzhaf investigated

introns in GP populations. Introns in GP are nothing more than evolved code fragments

that do not effect the fitness of the individual. They divided the introns into two

categories, Explicitly Defined Introns (EDI) and Implicit Introns (II). lis develop through

the process of evolution. EDIs were specifically added into the program structures,

which were then run through the CGPS mentioned previously. An EDI is a structure that

does not affect the fitness calculation of the individual, but does affect the probability of

crossover between adjacent blocks of evolved code. lis are introns that emerge from the

code itself.

They identified many classes of code segments that behaved as introns, but chose

to evaluate code segments (1) that did not contribute to the fitness, and (2) had the

property where each node could be replaced by a no operation (noop) instruction without

affecting the output for any of the fitness cases. The number of introns in an individual is

counted by first making the noop substitution and then counting the number of times

there is no affect on the fitness. The effective length of the individual is the absolute

length of the individual's chromosome minus the number of introns.

They discovered that both types of introns protect an entire individual or code

block against the effects of destructive crossover. EDIs and Us were also found to work
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together. EDIs helped to keep lis around until the perfect individual was found, at which

time their existence dropped to nearly zero. That dropping off may be a good indication

as to when to stop training the population.

22



IV. FORMAL DEFINITION OF THE PROBLEM

Evolutionary biology and genetics are very complex subjects; it is necessary to

understand each part of a highly specialized, complicated system and how the parts

interact with each other to affect the whole. There are many questions biological/genetic

researchers have yet to adequately answer as to why things are the way they are and how

they work. Because this thesis is an attempt to coordinate the unrelated disciplines of

computer science and biology/genetics, it is crucial that the genetic mechanisms have

been either proven or have been adequately theorized before they are chosen. If the

mechanisms chosen are not a cause of evolutionary changes in organisms, then the

approach of this thesis is faulty. If the mechanisms cannot be clearly defined, then it will

be difficult, if not impossible, to unambiguously express their functionality as an

algorithm that can be implemented on a computer.

Of the three previously stated genetic mechanisms—degeneracy, intron/exon

regions, and dominant/recessive traits—only the latter two will be implemented.

Although these mechanisms have been implemented individually in previously discussed

research, there has been no research uncovered that combine the two. The mechanism

required to implement degeneracy is very complex and outside the scope of this thesis.

To demonstrate that the specialized GA works, it will be applied to a problem to which a

traditional genetic algorithm/program has been used successfully (i.e., to find the answer

to a series expansion). If it can be proven that this specialized GA can evolve a working

program, the next question to be answered is whether or not it can do better than, the

same as, or worse than a traditional GA/GP performance.

As covered in Chapter I, this is a new GA approach. From Chapter II, though,

there are many variations of GAs and other EC methods, and it is arguable that this new

approach is actually a GP because of its implementation. Each of these categories uses

different characteristics and different parameters. Experimental results will help to

better classify as to where this new GA best fits, but even without knowing in advance

what characteristics and parameters will be most important, there are general questions

that need to be answered.

As mentioned in Chapter I, the three basic questions of what initial population

size to use, what probability of mutation to use, and how many generations must be
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produced before reliable results are produced, must be addressed 12
. Controlled runs,

where only one of these variables is changed, are done in order to establish a working

baseline. These variables are simply provided to the program prior to the start of the run.

Initial population sizes of 20, 50, 100, 500, 1000 and 5000 individuals are commonly

used throughout the literature and so are used here. The probability of mutation most

used in the literature is 0.001. As this experiment is particularly interested in the effects

of mutation, it is necessary to increase mutation's occurrence. Values of 0.01, 0.1 and 1

are used 13
. With regards to the number of generations, typically between 500 and 1000

generations has proven to be enough. While conducting the control experiments, though,

some runs were be allowed to reach 10,000. This series should give enough data such

that the minimum generation number required for reliable results can be determined 14
.

One important question with respect to GAs and GP is that of the representation

of individuals. Representation in GAs is characterized by the chromosome, whereas in

GP, representation is characterized by the functions, terminals and data on which they

operate. In this paradigm, there are two representations, the genotype and the phenotype,

with the genotype actually being a program. The phenotype is the result that is produced

by "running" the genotype. Since the implementation is done using a GP tool, the

genotype is represented by a parse tree holding randomly chosen values from a function

and terminal set. The GP tool's code has been modified to define introns (other than

those implicitly produced) and dominant/recessive genes. Each individual's genotype is

randomly generated using the specialized GA so that there are individuals expressing

recessive traits. Chapter V is a description of the system and the modifications that were

made.

Another important aspect of GAs and GP is that of choosing and testing the

fitness function. Fitness functions usually define boundary conditions, but how to best

12 Population size is intimately tied to the problem being solved. Each problem, though, has a minimum

necessary size in order to reliably find a solution. As it is yet unclear whether or not this specialized GA
works, population sizes that are common in the literature are used.

13 0.001% mutation is much larger than that which occurs naturally. The goal is to demonstrate the

function of the intron regions. As such, the percentages must be higher in order to achieve some

observable difference within a reasonable number of generations.

14 Allowing the population to run indefinitely will continue to result in changes. Similar numbers to more

traditional GAs are used in order to make the results from the new GA being explored in this thesis more

compatible with the new GA's older counterpart.
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choose a fitness function is not the primary focus of this thesis 15
. The fitness function is

important because it determines the genetic program's ability to evolve. The focus of the

thesis, though, is to see the effect of incorporating dominant/recessive pairs and introns

within the structure of an evolving program. Because this research desires to use this

specialized GA to evolve a program, this GA must be applied to a problem for which the

sufficiency property can be fulfilled (see Chapter II, Section C). Regardless of the

problem being solved, one measure of fitness is whether or not an individual finds the

correct answer. Additionally, partial credit needs to be given to individuals who were

close to finding the answer. Extra credit should be assigned to individuals who found the

answer most efficiently or in the fewest number of instructions executed. This implies

that unless the value of the output is null, every individual starts with a value from which

points would be subtracted or added depending on the fitness evaluation prior to the

awarding of extra credit.

This new GA is used to complete a series expansion. This problem involves a

comparison to a known solution. The series expansion can be evaluated for a given value

of x by expanding the series for a certain number of terms. An individual's fitness can be

determined by the absolute difference between the "real" answer (i.e., one computed on a

calculator) and the individual's return value. Since there is a minimum required number

of operations to be performed in a series expansion, those individuals who can find a

good solution in the least number of operations should receive a higher fitness than

individuals who find the same answer in more operations.

In order to determine whether or not the specialized GA works, it is necessary to

be able to determine the average fitness of the population, and the fitness and structure of

the most fit individual over the variety of control parameters (e.g., population size,

generations and probability of mutation). In the case of the series expansion problem, the

absolute difference between the real answer and the population/best individual answer

should be very small if the individual's fitness is to be considered a good one.

Once the introns are incorporated into the program, not only is it necessary to

track the average fitness and the fitness and structure of the best individual, but also the

15 One of the original inspirations for this thesis was the idea of increasing the search space by allowing

"dead" individuals. A "dead" individual is defined as one with low or no fitness value assigned to it. This

would prevent it from being selected to procreate in a Darwinian world. The "dead" individuals would be

allowed to remain within the population and would be subject to genetic operations. Although that idea did

not come to fruition, it is still intriguing.
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number of introns in the best-fit and worst-fit individuals, as well as the average number

of introns per individual in the population. If introns are beneficial in finding better

solutions, then the best individual should have more of them, most of the population will

have some of them, and the worst will have few, if any.

Dominance should be implemented separately from introns and tested before the

two are combined within the environment. In order to determine the effect of dominance

on the population, it is necessary to determine the number of dominant and recessive

genes in the best-fit and worst-fit individuals, as well as the average number of dominants

and recessives within the population.

When the two are combined, all of the above data must be tracked. To determine

if they work, each stage must be compared to the original test runs and compared to the

previous test results.

In summary, the fundamental question this thesis attempts to answer is whether or

not this specialized GA works, meaning whether this specialized GA succeeds in creating

a population of individuals that is capable of finding a program that, when executed, is

the solution to the problem. Assuming this specialized GA is shown to work, the next

step is determine under what parameters does it perform best.
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V. DESCRIPTION OF THE SYSTEM AND METHODS USED TO DETERMINE
EVOLUTION

A. GPSYS-1.1

GPSYS- 1.1 was written by Adil Qureshi in 1997 at the Department of Computer

Science, University College, London, United Kingdom [Ref 19]. The primary reason for

choosing it over others is because it is written in Java, which is better understood by this

author than C++ implemented tools such as GP-Quick [Ref 20], GALib [Ref 21], lilgp

[Ref 22], Genitor [Ref 23], Avida [Ref 24] and GPCPP [Ref 25]. GPSYS is a Strongly

Typed GP, with many built-in primitives, generic functions and terminals. It includes

commented source code along with javadoc documentation for all classes. Example

problems are provided with GPSYS which were invaluable in learning how to use the

system.

B. STRUCTURE OF GPSYS-1.1

GPSYS uses a tournament selection to choose the individuals who will be

mutated, crossed over and replaced within the population. In GPSYS, a default value of

seven individuals are choosen at random from the population to compete in the

tournament 16
. The number of individuals competing in each tournament is assigned by

the tournamentSize variable defined in the GPParameters class. This class must be

compiled before beginning a run in order for a new tournament size to be applied. The

GPParameters class is also where the probability of mutation, number of generations to

evolve and population size are defined.

The Population class holds the array of Individuals for each generation that will

undergo the operations of selection, crossover and mutation. The Individual class is the

evolved GP program. The Population class has the evolve function as well as the

selection methods for tournaments, mutation and crossover. When the population

evolves, new individuals are created either by mutation or by crossover, but not both.

The probabilities are based on a random seed provided at the start of the run. This

random seed is defined by Java's Random class.

16 Selection is random and is not influenced by an individual's fitness or any other attribute.
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Every Individual contains a Chromosome class and is assigned a fitness value

based on the Fit?iess class. The Chromosome class represents the tree whose nodes are

members of the Gene class. The Chromosome class also defines the genetic operators. If

a mutation is chosen as the evolving mechanism, a tournament is run from which is

selected the most and least fit individuals. The most fit individual will be cloned and the

clone will be mutated by selecting a branch of the tree at random and replacing the

branch with a new branch. The new branch is generated in one of two ways. One

method is to generate a tree of the maximum specified depth, which is defined in the

GPParamters class. The second method builds a tree in which the probability of

encountering a leaf is the same as that of an internal node. Which method is used is

probabalistically determined and based on the random seed. This mutated clone will then

replace the least fit individual selected by the tournament within the population.

If crossover is the chosen evolutionary mechanism, then a tournament is run. from

which three individuals are selected: the most fit (mother), the next best-fit (father), and

the worst fit. Incestuous crossovers are permitted, although a warning is given should

such occur 17
. The mother is cloned and a branch from the clone is randomly selected for

replacement. A branch from the father is chosen, copied, and placed into the clone,

creating the child 18
. If the child's depth exceeds the maximum as a result of the

crossover, it is returned to its original state as simply a clone of its mother. The worst-fit

individual selected in the tournament is then replaced by the child.

The Gene class is a node in the GP tree. Since GP trees are based on functions

and terminals, the GeneTerminal and GeneFunction classes extend the Gene class. Both

classes use the Primitives class, which represents a unit in the evolved program. This

class is extended by the Terminal and Function classes, where Terminal defines standard

Java primitives such as integer, float, and object. The Functions class can be extended in

order to implement user-defined functions. GPSYS comes with many predefined

functions such as arithmetic and logical operations.

17 An incestuous crossover was never incountered during these runs, but there is nothing provided within

the system to prevent it from happening.

18 The branch chosen from the father must return the same type as that selected from the clone for

replacement.
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C. HOW TO INCORPORATE INTRONS INTO GPSYS

Because GPSYS- 1.1 is fully object oriented, it is extensible, which is a very

desirable feature for making changes. One very big problem with a Java implementation

is the lack of pointers, making it difficult to assign the null value 19
. The first change

made by this research was to extend the Primitive class, which defined the fundamental

types used within the system. The Primitive class is actually generic, with extensions

defining the Terminals and Functions that can be used without the user having to define

his own. The Function class was modified by the inclusion of a no-operation (noop)

instruction. This instruction returns no values, takes no arguments, and does nothing.

This function will be used at the root node of an intron. It can be found within the sub-

tree of the intron, but the highest node connecting the intron to the parse tree must be a

noop. Luckily, the Type class, which defined all the off-the-shelf usable types, also

included a no argument constructor defined as "No Type."

The Gene class was modified with a boolean flag indicating whether or not the

gene is an intron. All terminals will set this flag to false because terminals are the values

used by the functions. The Gene class is generic and is extended by the GeneTerminal

and GeneFunction classes. A no-operation class called Nop extends the Function class.

The user can ensure introns are made by including Nop as one of the available functions

when setting the GP parameters (GPParameter class) before compiling and running the

population.

The Population class had to be modified in order to collect the necessary data on

the entire population (average number of introns per individual) as well as to retain the

fitness, number of introns, and structure of the best and worst individuals.

D. HOW TO INCORPORATE DOMINANT TRAITS INTO GPSYS

Implementing dominant/recessive traits required modifying many of the same

classes. The first changes made were to extend as many of the predefined functions as

possible. The predefined functions are the dominants. These functions, which are all

classes, are extended to create the recessives. If one is present, the recessive functions all

subtract a value away from the individual's fitness.

19 Only a Java Object can be assigned a null value. Primitive types cannot be assigned to null, nor can

primitives be type casted to an Object which could then subsequently be set to null.

29



The Gene class is also modified to include a boolean flag which is true if the gene

is dominant, false otherwise20 . An additional allele flag is included that allows the gene

to be identified as homozygous dominant, homozygous recessive or heterozygous.

During crossover, this flag is checked in both parents to ensure the offspring produced is

a Mendelian possibility with the probability of creation of that type equal to the

Mendelian probability based on the law of dominance (see Appendix C).

Just as with the introns, the Population class had to be further modified in order to

be able to determine the average number of dominant and recessive traits in the

population, as well as for the best-fit and worst-fit individuals.

C. ANALYSIS STRATEGY

To recapitulate from Chapter IV and summarize the above discussion, the

following tables are provided to graphically depict the experiments run and the data

collected. On the test runs, which performed a series expansion without any modification

to GPSYS, the following data was collected.

Probability of Mutation Values tested were 0.0. 0.001, 0.01, 0.1, 0.5, 1.0

Number of Generations-

'

Values tested were 10, 50, 100. 250. 500, 1000, 5000. 10000

Population Size Values tested were 20. 50, 100, 500. 1000. 5000, 10000

Averase Fitness Evaluated by the Population class

Average Complexity Complexity refers to the number of nodes in the evolved tree

Best-Fit Fitness The best answer in the population

Best-Fit Complexity For a comparison to the average complexity

Table 1 . Test Run Parameters Used and Data Produced

-° Terminals cannot be dominant or recessive since they are acted on, and so the flag is set to false for all

terminals.

21 GPSYS tended to crash while running the larger populations for a longer number of generations. Data is

continuously written to file as the run progresses, so some data is saved even in the event of failure.

Because of the tendency to fail, tests on larger populations (10,000 or 5,000 individual population) run for

longer generations were either not conducted, or the data used is that which was collected up the time of the

failure.
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The fitness values were determined bv the followins functions:

Series Expansion x
n
+ x

nl
+.. . + 1 , where n is random. but

does not exceed 10, 0.0<x<25

Fitness Function:

1 eqn above - individual's return valuel

Table 2. Fitness Functions for Test Run

Once the introns were added, the following data was necessary:

Probability of Mutation Values tested were 0.0, 0.001, 0.01, 0.1, 0.5, 1.0

Number of Generations Values tested were 1000

Population Size Values tested were 500, 1000

Average Fitness Evaluated by the Population class

Average Complexity Complexity refers to the number of nodes in the evolved tree

Best-Fit Fitness The best answer in the population

Best-Fit Complexity For a comparison to the average complexity

Worst-Fit Fitness The worst answer in the population

Worst-Fit Complexity For a comparison to the average complexity

Best-Fit Number of Introns For a comparison to the average population and worst

Worst-Fit Number of Introns For a comparison to the average population and best

Average Number of Introns Evaluated by the Population class

Table 3. Parameters Used and Data Produced for Tests after Introns are Included
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The dominant/recessive genes required the following data:

Probability of Mutation Values tested were 0.0. 0.001, 0.01, 0.1. 0.5, 1.0

Number of Generations Values tested were 1000

Population Size Values tested were 1000

Average Fitness Evaluated by the Population class

Average Complexity Complexity refers to the number of nodes in the evolved tree

Best-Fit Fitness The best answer in the population

Best-Fit Complexity For a comparison to the average complexity

Worst-Fit Fitness The worst answer in the population

Worst-Fit Complexity For a comparison to the average complexity

Best-Fit Number of Recessive Genes For comparison to the average/worst dominants

Best-Fit Number of Dominant Genes For comparison to the average/worst dominants

Worst-Fit Number of Recessive Genes For a comparison to the average population and best

Worst-Fit Number of Dominant Genes For comparison to the average/best dominants

Average Number of Recessive Genes Evaluated by the Population class

Average Number of Dominant Genes Evaluated by the Population class

Table 4. Parameters Used and Data Produced for the Evaluation of Dominant/Recessive Pairs
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The combination of the two required the following data to be collected:

Probability of Mutation Values tested were 0.0, 0:001, 0.01, 0.1, 0.5, 1.0

Number of Generations Values tested were 1000

Population Size Values tested were 1000

Average Fitness Evaluated by the Population class

Average Complexity Complexity refers to the number of nodes in the evolved tree

Best-Fit Fitness The best answer in the population

Best-Fit Complexity For a comparison to the average complexity

Worst-Fit Fitness The worst answer in the population

Worst-Fit Complexity For a comparison to the average complexity

Best-Fit Number of Recessive Genes For comparison to the average/worst dominants

Best-Fit Number of Dominant Genes For comparison to the average/worst dominants

Best-Fit Number of Introns For a comparison to the average population and worst

Worst-Fit Number of Recessive Genes For a comparison to the average population and best

Worst-Fit Number of Dominant Genes For comparison to the average/best dominants

Worst-Fit Number of Introns For a comparison to the average population and best

Average Number of Recessive Genes Evaluated by the Population class

Average Number of Dominant Genes Evaluated by the Population class

Average Number of Introns Evaluated by the Population class

Table 5. Parameters Used and Data Produced for Dominant/Recessive and Intron Runs
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VI. RESULTS

A. GEOMETRIC SERIES EXPANSION CONTROL EXPERIMENTS

The purpose behind conducting this first set of control experiments was to determine

system behavior and with which population size and number of generations the system

performed best. The judging criterion used to determine best performance is based on

finding the fittest individual within the shortest number of generations. The results of

these runs were subsequently used to determine the population size and number of

generations to be used with the introns and dominant/recessive genes experiments.

From Chapter IV, the population sizes varied between 20 and 10,000, with the

number of generations running to 10.000. The probabilities of mutation used were

selected from 0.001, 0.01, 0.1 and 1.0. Each run used the same random seed in order to

determine what effect population size and probability of mutation had on the overall run.

All tests were conducted on a Dell™ Dimension XPS D300 with a Pentium II processor

running Microsoft Windows95™ as the operating system. All code was compiled with

the Java Development Kit version 1.2.

Population Size Generations Run Best Fitness Generation Discovered

20 10000 1085287 6284

50 10000 2023.009 6

100 10000 2023.012 2266

250 10000 0.051 13

500 5944 306.003 11

1000 3337 0.046 10

5000 1000 0.047 18

10000 535 0.033 14

Table 6. Results of Series Expansion Runs with a Probability of Mutation of 0.001

In these initial runs, smaller starting populations (20 and 50), even though they

reached the termination criteria of 10,000 generations, never achieved as high a fitness as

the larger populations. They continued to be tested, although in later runs they were

eliminated.
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Population Size Generations Run Best Fitness Generation Discovered

20 10000 143258 48

50 .10000 89559.43 8016

100 10000 2023.012 6108

250 10000 2023.002 2

500 10000 305.983 761

1000 1000 305.981 13

5000 391 0.038 23

10000 200 0.034 6

Table 7. Results of Series Expansion Runs with a Probability of Mutation of 0.01

Larger population sizes (5,000 and 10,000 individuals) evolving for longer

generations usually caused a Java. io. exception that stopped the run before reaching the

predefined termination condition of 10,000 generations. Data was continuously collected

up to the time of the failures, which explains the differences in the number of generations

each population size was run. Eventually, the 10,000 member population size was

eliminated from testing because it did take significantly more time to complete, always

crashed, and does not seem to provide significantly better results than a 5,000 member

population.

Population Size Generations Run Best Fitness Generation Discovered

20 10000 2023.012 1255

50 10000 50.985 2081

100 10000 2023.012 17

250 10000 306.003 6

500 10000 305.970 1792

1000 1000 0.030 13

5000 940 0.048 23

Table 8. Results of Series Expansion Runs with a Probability of Mutation of 0.

1
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Population Size Generations Run Best Fitness Generation Discovered

100 10000 522.500 2556

250 10000 3.424 9292

500 2704 80.890 1862

1000 1000 0.044 52

5000 1000 0.055 12

Table 9. Results of Series Expansion Runs with a Probability of Mutation of 1.0

From looking at the tables and comparing the best fitness values found against

when they were discovered, populations of 1,000 and 5,000 achieved better results in

fewer generations. With the exception of Table 7, the initial population size of 1,000

always achieved slightly better fitness than that of 5,000 and did not crash within 1,000

generations. Thus, the remaining runs were done using population sizes of 1,000 evolved

for 1 ,000 generations.

Two additional control runs were performed after deciding on a population and

generation size. The first run had its probability of mutation set to zero in order to see

just the effects of crossover. The second run was done to see the results of a 50% chance

of a mutation. The results are presented in Table 10.

Probability of

Mutation

Population Size Generations Run Best Fitness Generation

Discovered

1000 1000 305.990 369

0.5 1000 1000 2.944 724

Table 10. Series Expansion Runs with Probabilities of Mutation of 0.0 and 0.5

The first runs conducted used a 0.001 probability of mutation. Figure 4 shows

the graph of the average population fitness. For readability, only the results to 1,000

generations are displayed. The figure shows a lot of variance in the average population

fitness from generation to generation22 . The number of outliers increased with increased

population size. As a result, medians were used to measure central tendency. Figure 5

shows the results. Population sizes of 500 and 10,000 were removed from the graph

because their median values (1.4 X 10 and 7.02 X 10 ) caused the other values to be

unreadable.

22 The outlier in Figure 4 plotted between generation 144 and 180 has a value greater than 1 X 10
38
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Figure 5. Average Fitness Values with a Probability of Mutation of 0.001
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There is a minimum number of operations that must be performed in order to find

a good solution to a series expansion, so the best-fit individual's complexity should be

the closest to that minimum (see Chapter V). In Figure 6, one can see that the average

population complexity is very close to the best-fit complexity, but always less. That

trend is consistent across all the tests regardless of population size, probability of

mutation, or number of generations. Table 1 1 shows the average population complexity

compared to the best-fit individual's complexity. As the worst-fit individual's data was

not collected in the control runs, one can only assume from this trend that individuals

with significantly lower complexity are the least fit.

16

14

10

F
m*m*m»mtm <mm ' mm*M**m0*m*0*m**00+m*>

J

r~ — \r. ct> «-, i^ — i/-, c* **":
t— — v~. CT*r*ir^ — ir. c* **> r~OTt^OTi— — .^-j^ — rroo — -too — >/-. oo — w, oc

**-. f, fiTTTW. v. v, soo-or~r~r~ocoeooo*o*c*
Generations

—•— Avg Pop Complexity -*- Best Fit Complexity

Figure 6. Comparison of Average Complexity with the Best-Fit Individual's Complexity

for Population Size of 1,000 and a 0.001 Probability of Mutation
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Probability of Mutation Population Size Average Population

Complexity

Best Individual's

Average Complexity

0.001 20 40.284 45.729

0.001 50 11.845 13.005

0.001 100 11.376 12.550

0.001 250 13.529 15.006

0.001 500 11.790 13.002

0.001 1000 13.529 14.993

0.001 5000 20.175 22.966

0.01 20 37.998 43.351

0.01 50 46.260 54.118

0.01 100 10.703 11.778

0.01 250 13.062 14.418

0.01 500 13.683 15.001

0.01 1000 13.566 14.994

0.01 5000 20.457 23.133

0.1 20 13.621 14.948

0.1 50 24.191 27.417

0.1 100 15.130 16.767

0.1 200 11.842 12.999

0.1 500 49.428 57.080

0.1 1000 25.666 29.665

0.1 5000 21.813 25.017

1.0 100 53.519 64.677

1.0 250 26.091 29.309

1.0 500 65.597 81.181

1.0 1000 25.232 24.916'

1.0 5000 20.928 21.050

0.5 1000 59.941 74.692

0.0 1000 11.768 13.016

* This is the only inconsistent point

Table 11. Comparison of Average Population Complexities to Best-Fit Complexities
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B. GEOMETRIC SERIES EXPANSION WITH INTRONS

In order to answer the questions posed in Chapter IV, namely whether or not

adding explicitly defined introns function correctly, the author needed to find examples

of individuals in which the number of introns changed, but the fitness remained the

same. Figure 7 is an excerpt from the Excel™ spreadsheet into which all collected data

was imported. It, along with other examples, show that adding explicitly defined introns

within the GPSYS- 1.1 does work. The next question to answer is what effect does it

have when applied to the same problem as the control runs.

Fitness • Complexity Introns

305.99182 25 2

305.99182 25 2

305.99182 23 2

305.99182 23 2

305.99182 23 2

305.99182 23 2

305.99182 23 2

305.99182 23

305.99182 17

305.99182 17

305.99182 17

305.99182 17

305.99182 17

305.99182 17

305.99182 13

Figure 7. Excerpt from Run Output Showing Explicitly Defined Introns

With a population size of 1,000 and 1,000 generations evolved, adding introns

produced the best fitness values depicted in Figure 8. Comparing these values to the best

fitness found in Tables 6 through 10 from the control runs, the fitness values depicted in

the figure most closely match results from control runs with a population size of 500.

Those control run results were not very good, which is why 500 was not chosen as the

original population size for further tests.
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Figure 8. Best Individuals with Introns for Population Size of 1,000

Since these results were not as good as those from the controls, it was decided to

run tests with a population size of 500 to see if there was any improvement in the best

fitness found. The only population to produce a good answer was the one with a

probability of mutation of 0.5. Because of this encouraging result, two additional tests

were run with a population sizes of 250 and 750. These tests were done in an attempt to

zero in on the best population size to use for the experiment, since 1,000 performed

poorly. However, they produced best fitnesses of 305.990 and 305.985 respectively (see

Figure 9).

With no consistent discovery of a highly fit individual as compared to the control

runs, the obvious conclusion is that population sizes of 500 and 1,000 with explicitly

defined introns run for 1,000 generations do not render as good a solution. The addition

of introns appears to causes the population to converge on a local optima. As can be seen

in Table 12, this convergence occurs very rapidly. However, the introns prevented the

extreme variance in average population fitness similar to what was depicted in Figure 6.

The results from one run are shown in Figure 10.
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Figure 9. Best Individuals with Introns for Population Size of 500

Population Size Probability of Mutation Generation Discovered

1000 0.0 9

1000 0.001 6

1000 0.01 10

1000 0.1 6

1000 0.5 5

1000 1.0 3

500 0.0 3

500 0.001 3

500 0.01 3

500 0.1 6

500 0.5 8

500 1.0 4

Table 12. Generation of Discovery of Best Fitness

43



80000000

70000000

60000000

50000000

a 40000000

30000000

20000000

10000000

Figure 10. Single Run Average Population Fitness for Population Size 1,000 with a

0.001 Probability of Mutation

Table 1 1 compares average population complexity and the average best-fit

individuals' complexity. The table shows that the best-fit individuals are almost without

exception more complex than the population. Figure 1 1 is a comparison of the average

population complexity with that of the best- and worst-fit individuals. One can see that in

several bars the average population complexity remains smaller than the best-fit average

complexity, but this not consistently the case. An important point though is that the best-

fit complexity over all runs remains relatively the same. This similarity is probably due

to the quick convergence to local optima in all the tests. Figure 8 shows all the local

optima were very close in fitness value.

Since the fitness values of the best individuals converged so quickly to a local

optima, were introns responsible? Figure 12 compares the average number of introns for

a member of the population to that of both the average best and worst-fit individuals. In

the runs with a probability of mutation of 0.001, 0.01, and 0.1, the best-fit individuals
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never had an intron. Additionally, very few introns were found within either the entire

population or the worst individuals during those runs.

Pmut = 0.0 Pmut = 0.001 Pmut=0.01 Pmut = 0. 1 Pmut = 0.5 Pmut = 1 .0

White-Population Grey-Best Individual Black-Worst Individual

Figure 1 1 . Average Complexities of the Population, Best-Fit, and Worst-Fit for

Population Size of 1,000

Table 13 is a comparison of whether introns existed in the population, best

individual, and worst individuals, and whether or not they were ultimately excised from

the tree. Introns consistently resided within the worst-fit individual longer than the best-

fit individual, but the worst-fit individual did not always have an intron. In most cases,

the worst individual had no introns. In Figure 12, the worst-fit individual has fewer

introns than the average population.
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Figure 12. Average Number of Introns in the Population, Best Individual and Worst

Individual

Probability of Mutation Generation in which

introns no longer found

in population

Generation in which

introns no longer found

in best

Generation in which

introns no longer found

in worst

Introns throughout 20 127"

0.001 8 Never existed 1

0.01 Introns throughout Never existed 1

0.1 Introns throughout Never existed 1

0.5 Introns throughout 20 39

1 Introns throughout 20 84*

Introns were found sporadically throughout the rest of the generations, but were primarily

Table 13. Comparison of Existence of Introns
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From the information provided in Chapter II, the chromosomes, or gene trees in

this instance, are acting like the chromosomes of the lower eucaryotes which have lost

most of their introns in favor of more continuous genes. The consistently low occurrence

of introns throughout the population indicate that the genetic mechanisms, without

specifically being directed to do so, replace the intron subtree. This function is consistent

with the "splice point" role of introns in DNA recombination.

In the tests with high probabilities of mutation, the average population fitness

show little variation as compared to runs with a low probability of mutation because the

intron region is an area where these mutations occur without affecting the overall fitness

of the individual23 . Although there was one run that found a good solution, the general

effect of adding introns is that of preventing the drastic changes resulting from crossover

and mutation. With dramatic changes less likely, the population becomes more

homogenous, which explains the quick and permanent convergence to local optima.

C. GEOMETRIC SERIES EXPANSION WITH DOMINANT/RECESSIVE

GENES

In order to answer the questions posed in Chapter TV relating to whether the addition

of dominant/recessive genes works, the author needed to find examples of individuals in

which the number of recessive genes changed and the fitness increased. Figure 13 is an

excerpt from the Excel™ spreadsheet into which all run data was imported. It, along

with other examples, show that adding dominant/recessive genes within GPSYS- 1.1 does

work. Next, what effect do dominant/recessives have when applied to the same problem

as were the control runs?

Fitness Complexity Introns Dominants Recessives

56.01144 19 4 5

56.01144 19 4 5

56.01144 19 4 5

55.01144 17 4 4

55.01144 17 4 4

55.01144 17 4 4

Figure 13. Excerpt from Run Output Showing Dominant and Recessive Genes

-J Introns will affect fitness if complexity is considered during evaluation. If two individuals evolve to the

same answer, the less complex individual will be given the higher fitness.
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With a population size of 1,000 run for 200 generations, adding dominant and

recessive genes produced the best fitness values as depicted in Figure 14. Only durations

of 200 generations were run because early analysis of the output data on runs of 1,000

generations showed convergence on the same value at approximately 20 generations.

As compared to the runs with just the introns enabled (see Figure 8),

dominant/recessive genes either had similar or better results (55.011 an 1.044). Similar

tests were run for a population size of 500 with similar results (see Figure 15).

Table 12 notes that the addition of introns caused a quick convergence upon a

local optima. Table 14 is a similar comparison but with a population including dominant

and recessive genes. Convergence was not as quick as with the introns cases. Although

more aligned with the fitness values from the control runs for population size of 1,000

(see Tables 6-10), the time for convergence for a population size of 500 is much faster

than those reported from the control runs.

350

306.9901682

300

250

200

305.9938059 3059918218

1.043797731

Pmut 0.0 0.001 0.01 0.1 0.5 1.0

Figure 14. Best Individuals with Dominant/Recessive Genes in Population Size of 1,000
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Population Size Probability of

Mutation

Generation Discovered

1000 0.0 3

1000 0.001 4

1000 0.01 22

1000 0.1 5

1000 0.5 25

1000 1.0 143

500 0.0 1

500 0.001 1

500 0.01 22

500 0.1 38

500 0.5 39

500 1.0 86

Table 14. Generation of Discovery of Best Fitness

= 0.6

1.043797731 1043797731 1043797731 1.043797731 1.043797731

Pmut= 0.0 0.001 0.01 0.1 0.5 1.0

Figure 15. Best Individuals withDominant/Recessive Genes for Population Size of 500
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Figures 16 and 17 compare the complexities of the average population, best-fit,

and worst-fit individuals for population size of 1,000 and 500. respectively.

Pmut = 0.0 Pmut = 0.001

White-Population

Pmut = 0.01 Pmut = 0.1

Grey-Best Individual

Pmut = 0.5 Pmut=1.0

Black-Worst Individual

Figure 16. Average Complexities of the Population, Best-Fit, and Worst-Fit for

Population Size of 1,000

The results in Figure 16 are consistent with the control runs in that the average

population complexity is slightly less than the best fitness. Figure 17 shows the same

trend, except for the run with a probability of mutation of 1. In Table 1 1, which listed the

complexities of the best-fit individuals from the control runs, there was one run at that

probability of mutation that also was not consistent. The difference in the values is very

small, as was the case in the control runs.
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Pmut = 0.0 Pmut = 0.00 1 Pmut = 0.01 Pmut = 0.

1

Pmut = 0.5 Pmut = 1 .0

White-Population Grey-Best Individual Black-Worst Individual

Figure 17. Average Complexities of the Population, Best-Fit, and Worst-Fit for

Population Size of 500

Figure 1 8 is a comparison of the average number of dominant and recessive genes

in the population, best-fit, and worst-fit individuals. The results are what one would

expect; there are generally more recessive genes in the worst-fit individual, represented

by black bars in the figure, than there are in the best and the average population. The

very low recessive gene occurrence in the higher probabilities of mutation is puzzling.

Both the crossover and mutation mechanisms have equal opportunities for exchanging a

recessive gene for another recessive gene. So why is the occurrence so infrequent?

The dominant and recessive genes are modeled after Mendel's law of dominance

(see Appendix C). As a result, crossover is similar to meoisis and sexual recombination

and follows Mendel's law of segregation. In finite populations where Mendel's law of

segregation holds, the population is subject to genetic drift, a dispersive evolutionary

force that removes genetic variation. Mutation usually counters its effects, but in this

problem many of the mutations are neutral because the end products are functionally the

same because a recessive gene can replace a dominant one and vice versa. Thus, this
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particular implementation follows the neutral theory and is an example of Non-Darwinian

evolution. Although the crossover probabilities were modeled after Mendel's law, the

type of dominance being exhibited is that of underdominance, which is influenced by a

genetic drift.

x

Pmut = 0.0 Pmut = 0.00 1 Pmut = 0.01 Pmut = 0.1 Pmut = 0.5 Pmut =1.0

White-Population Grey-Best Individual Black-Worst Individual

Figure 18. Average Number of Dominant and Recessive Genes in the Population, Best

Individual and Worst Individual for Population Size of 1 ,000

One feature that populations which include dominant and recessive genes share

with those which include introns is that they prevent the large variance in average

population fitness seen in the control runs. Figure 19 is a typical example showing that

the average population fitness falls within a smaller range.
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Figure 19. Single Run Average Population Fitness over 200 Generations for a Population

Size of 1 ,000 with Probability of Mutation of 0.

1

D. GEOMETRIC SERIES EXPANSION WITH BOTH INTRONS AND
DOMINANT/RECESSIVE GENES

Although only based on runs using the same random seed, the results of the

previous sections provide enough information about the effect of adding introns or

dominant/recessive genes such that test results from the combination of the two can be

better explained. This thesis is most interested in determining what happens when both

mechanisms are used in the same population. As such, twenty-one random seeds were

used to run the tests so that a statistically significant result could be found.

One overall finding is that the average population fitness did not exhibit the

disparity manifest in the control runs. Medians continued to be used to measure central

tendency for consistency with earlier experiments.

The following tables depict the best-fit individual found for population sizes of

500 and 1000 evolved for 200 generations using the six previously mentioned

probabilities of mutation. Following these are the results for the entire population in

which that best-fit individual was found.
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Generation Found Fitness Complexity Introns Dominants Recessives

19 1.051 15 6 1

27 2.053 23 9 2

50 3.038 23 8 3

27 3.051 15 4 3

11 305.999 13 6

199 305.999 13 6

8 306.003 13 6

16 306.007 13 6

7 306.990 13 5 1

10 306.990 13 5 1

14 306.992 13 5 1

4 307.007 13 5 1

15 307.992 15 5 2

4 307.993 15 5 2

10 308.985 15 4 3

24 308.985 15 4 3

8 308.992 15 4 3

3 309.001 15 4 3

50 309.013 17 5 3

4 309.993 15 3 4

3 2023.012 13 6

Median: 1

1

306.992 15 5 1

Table 15. Best-Fit Individuals for Population Size of 500 with Probability of Mutation of 0.0

The distinct absence of introns in all the best-fit individual was at first a cause for

possible concern because the tests run with only introns had at least one intron in the best

individual (see Table 13). Out of these runs, only 3 ever had a best-fit individual with an

intron at any time and that intron was removed early in the run. More noteworthy is that

introns were completely removed from the entire population for every random seed tested

(see Tables 17 and 18).

The excision of the some introns is consistent with the findings reported in a

section 2, but the complete removal of introns in populations with a low probability of

mutation shows the effect of genetic drift caused by the dominant and recessive genes.

Genetic drift is also responsible for the removal of all recessive genes as well.

Additionally, the tournament selection process would also rid the population of a portion

of individuals with introns and recessives because the least fit individual selected in any

tournament is the one that will be replaced as a result of crossover.
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Tables 19-22, which show the results from using a 0.001 probability of mutation.

Tables 23-26, which show the results from using a 0.01 probability of mutation, show

nearly identical results. The small probability of mutation is not strong enough to counter

the effects of the drift. The tables are provided for completeness.

Generation Found Fitness Complexity Introns Dominants Recessives

7 306.001 13 6

22 306.006 13 6

9 306.007 13 6

26 305.994 15 7

9 305.999 15 7

8 305.994 17 8

4 306.999 13 5

5 306.999 13 5

153 306.999 13 5

17 307.001 13 5

26 307.001 13 5

11 307.003 13 5

7 307.004 13 5

19 307.007 13 5

21 306.993 15 6

2 307.001 15 6

9 307.003 15 6

28 2.039 17 6 2

9 308.985 15 4 3

31 3.051 17 5 3

3 56.013 19 4 5

Median: 9 306.999 13 5 1

Table 16. Best-Fit Individual for Population Size of 1,000 with Probability of Mutation of 0.0
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

5139698 11.788 5.384 21 2

3264676 11.828 5.404 19 2

13750212 11.784 4.472 0.908 Never 2

1936911 13.496 5.334 0.912 Never 2

14103352 13.520 4.496 1.77 Never 9

2248451 13.488 3.570 2.68 Never 2

3715621 13.532 3.584 2.688 Never 2

17377561 13.616 3.602 2.702 Never 2

156755 20.692 7.112 2.706 Never 2

12918800 1 1 .744 5.358 29 3

2219762 11.816 4.522 0.886 Never 3

12954467 11.756 4.448 0.912 Never 3

5165956 11.764 4.448 0.928 Never 3

11949839 11.768 4.454 0.93 Never 3

636449 20.284 7.840 1.804 Never 3

17612654 13.624 3.636 2.672 Never 3

3479845 15.220 4.408 2.688 Never 3

156755 20.692 7.112 2.706 Never 4

13114036 11.752 3.582 1.782 Never 10

15879139 11.784 2.698 2.694 Never 14

5263248 11.772 4.454 0.914 Never 41

Median:

5165956 11.828 4.454 1.77 3

Table 17. Population Statistics for Population Size of 500 with Probability of Mutation of 0.0
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

8908048 11.796 5.378 36 2

4727214 11.822 5.405 23 2

8908555 13.512 6.253 28 2

15611664 11.792 4.491 0.892 Never 2

15361321 11.776 5.387 24 3

13383132 11.786 4.502 0.884 Never 3

15853824 11.776 4.497 0.888 Never 3

4471257 11.810 4.503 0.898 Never 3

9729269 11.786 4.485 0.907 Never 3

3985730 13.516 3.572 2.678 Never 3

15584882 15.106 5.293 1.764 Never 4

14972892 16.966 3.544 4.439 Never 4

9885344 11.776 5.378 22 5

14791074 11.764 4.472 0.907 Never 5

9006572 13.562 5.383 0.895 Never 6

9605791 11.784 4.475 0.917 Never 6

23048590 13.630 3.560 2.756 Never 7

15879818 11.748 4.455 0.907 Never 10

9052629 13.550 6.268 44 11

10484363 11.776 3.554 1.827 Never 15

9842645 11.786 4.485 0.904 Never 20

Median:

9885344 11.792 4.497 0.898 4

Table 18. Population Statistics for Population Size of 1,000 with Probability of Mutation of 0.0
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Generation Found Fitness Complexity Introns Dominants Recessives

11 306.006 13 6

11 306.007 13 6

11 2023.012 13 6

178 305.981 15 7

14 306.004 15 7

7 306.990 13 5

103 306.990 13 5

29 306.992 13 5

16 307.007 13 5

2 1.051 15 6

11 306.981 15 6

6 307.992 13 4 2

5 308.003 13 4 7

21 308.003 13 4 2

4 308.009 13 4 2

38 2.051 15 5 2

13 307.992 15 5 2

42 2.039 17 6 2

3 309.001 15 4 3

28 3.038 23 8 3

34 3.038 23 8 3

Median: 13 306.990 13 5 1

Table 19. Best-Fit Individual for Population of 500 with Probability of Mutation of 0.001
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Generation Found Fitness Complexity Introns Dominants Recessives

26 305.990 13 6

33 305.990 13 6

20 306.007 13 6

19 305.990 15 7

13 305.994 15 7

6 306.990 13 5

15 306.992 13 5

4 307.01

1

13 5

8 2024.004 13 5

8 2024.012 13 5

8 306.993 15 6

18 306.994 15 6

16 306.999 15 6

4 307.990 13 4 2

3 308.004 13 4 2

2 308.032 15 5 2

25 2.039 17 6 2

27 53.022 19 7 2

16 3.046 15 4 3

24 3.051 15 4 3

31 3.051 17 5 3

Median: 16 306.990 15 5 1

Table 20. Best-Fit Individual for Population Size of 1,000 with Probability of Mutation of 0.001
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

13094926 11.756 3.584 1.786 Never 10'

14493739 11.784 2.698 2.692 Never 15"

15554173 11.768 5.372 31" 2

4560987 11.780 5.380 22" ~t*

3108047 11.824 5.404 22" 2'

14484776 13.580 5.408 0.888 Never 2*

14276082 11.780 4.474 0.908 Never 2

2489404 11.804 4.480 0.910 Never 2*

14321856 11.760 4.202 1.156 Never 2"

17111365 11.712 3.582 1.766 Never •
2"

15568897 15.160 5.288 1.766 Never 2"

14365302 11.760 3.590 1.792 Never
-)'

2210528 13.472 4.444 1.798 Never 2*

13988350 11.700 3.584 1.776 Never 22"

2004814 13.504 5.364 0.892 Never 23*

4786412 11.752 5.370 27" 3

6691426 11.724 4.460 0.880 Never 3"

3541954 13.624 5.376 0.946 Never 3*

12942572 11.784 3.582 1.808 Never 3

152967 20.688 7.152 2.696 Never 3

312936 20.492 7.034 2.700 Never 4*

Median:

12942572 11.784 4.480 1.156 9

Introns or recessive genes were found sporadically throughout the rest of the generations, but were

primarily absent.

Table 21. Population Statistics for Population Size of 500 with Probability of Mutation of 0.001
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

8828642 11.748 4.470 0.902 Never 10"

9760143 11.794 5.394 36" 11

16008376 15.096 5.303 1.742 Never 11"

9809607 11.776 3.603 1.783 Never 12'

15432350 11.730 3.587 1.776 Never 13"

25276858 11.806 3.577 1.828 Never 13"

8656193 13.540 6.267 32* 2*

8865615 13.544 5.390 0.883 Never 2"

8411607 13.552 5.377 0.897 Never 2"

23651367 11.784 4.498 0.893 Never 3"

23936360 11.854 4.483 0.947 Never 3'

4733644 13.526 3.566 2.684 Never 3"

3223203 13.482 3.565 2.685 Never 3"

10384052 11.774 5.373 46" 4"

3907847 11.818 5.395 32' 4"

3804003 13.568 3.584 2.690 Never 5"

9818730 11.750 4.450 0.910 Never 6*

10185169 11.778 4.481 0.911 Never 6"

16454039 16.896 6.180 1.773 Never 7"

10341839 11.748 4.443 0.929 Never 8"

3412313 13.464 6.231 35" 9"

Median:

9809607

11.818 4.483 0.911 6

Introns or recessive genes were found sporadically throughout the rest of the generations, but were

primarily absent.

Table 22. Population Statistics for Population Size of 1,000 with Probability of Mutation of

0.001
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Generation Found Fitness Complexity Introns Dominants Recessives

23 305.990 13 6

22 305.992 13 6

8 306.003 13 6

16 2023.012 13 6

19 0.051 15 7

13 305.981 15 7

5 305.999 15 7

3 306.992 13 5

143 307.003 13 5

14 306.992 15 6

30 306.993 15 6

7 306.994 15 6

18 306.994 15 6

10 2024.012 15 6

3 2025.009 13 4

59 2.051 15 5 2

70 308.003 15 5 2

8 308.006 15 5 2

7 2.055 17 6 2

88 308.990 15 4 3

7 309.985 15 3 4

Median: 14 306.992 15 6 1

Table 23. Best-Fit Individual for Population of 500 with Probability of Mutation of 0.01
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Generation Found Fitness Complexity Introns Dominants Recessives

9 305.990 13 6

21 305.992 13 6

169 305.992 13 6

10 305.999 13 6

21 305.999 13 6

16 306.001 13 6

5 306.003 13 6

12 306.003 13 6

51 0.051 15 7

17 305.992 15 7

15 305.994 15 7

5 306.992 13 5

13 306.999 13 5

59 307.003 13 5

33 307.007 13 5

7 306.981 15 6

14 306.981 15 6

140 306.990 15 6

16 1.053 23 10

6 2.051 15 5 2

20 2.051 15 5 2

Median: 16 305.999 13 6

Table 24. Best-Fit Individual for Population Size of 1,000 with Probability of Mutation of 0.01
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

4459363 11.748 5.364 0.004 Never Never

5036917 11.780 5.368 0.004 Never" Never

13270204 11.800 5.384 0.004 Never Never

14458805 13.616 6.296 0.004 Never Never

13003576 11.784 5.360 0.006 Never Never*

6371712 11.784 5.368 0.006 Never" Never

2921386 13.496 6.236 0.006 Never Never

14222781 13.540 5.368 0.892 Never Never"

3125493 11.840 4.518 0.894 Never Never

3929052 13.592 5.384 0.894 Never Never"

14107135 11.776 4.482 0.902 Never Never

12941270 13.576 5.372 0.910 Never Never"

5112462 11.752 4.450 0.914 Never Never

7816937 11.848 4.458 0.954 Never 0.012 Never

5044470 11.812 3.626 1.780 Never Never"

16886785 13.460 4.438 1.790 Never Never

2095219 13.588 4.492 1.796 Never Never

2267586 13.568 4.460 1.814 Never Never

15452469 11.820 3.574 1.832 Never Never

6636942 11.832 2.648 2.864 Never Never*

17868211 13.628 2.756 3.560 Never Never"

Median:

6636942 11.840 4.518 0.902

Introns or recessive genes were found sporadically throughout the rest of the generations, but were

primarily absent.

Table 25. Population Statistics for Population Size of 500 with Probability of Mutation of 0.01
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

15254297 11.786 5.373 0.004 Never 0.001 Never

9278676 11.778 5.377 0.004 Never 0.001 Never

9092490 11.792 5.381 0.004 Never 0.001 Never

10378340 1 1 .800 5.384 0.004 Never 0.001 Never

9932836 11.738 5.350 0.005 Never 0.001 Never

11085528 11.756 5.363 0.005 Never 0.001 Never

9416659 11.766 5.365 0.005 Never 0.001 Never

10419268 11.774 5.372 0.005 Never 0.001 Never

8481694 13.548 6.262 0.005 Never 0.001 Never

3133824 13.490 6.214 0.007 Never 0.001 Never

8781014 11.786 4.495 0.889 Never 0.001 Never

8513889 13.580 5.401 0.891 Never 0.001 Never

10222374 11.736 4.469 0.893 Never 0.001 Never

9542253 11.782 4.486 0.893 Never 0.001 Never

10376794 11.790 4.490 0.893 Never . 0.001 Never

9115347 13.600 5.400 0.900 Never 0.001 Never

4446680 11.820 4.483 0.916 Never 0.001 Never.

6356949 20.480 8.803 0.919 Never 0.001 Never

3255375 13.482 4.452 1.798 Never 0.001 Never

2590846 13.512 4.456 1.803 Never 0.002 Never

9745228 11.804 3.566 1.829 Never 0.001 Never

Median:

9278676 11.736 5.365 0.889 0.001

Table 26. Population Statistics for Population Size of 1,000 with Probability of Mutation of 0.01
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Tables 27 and 28 show the best individual found in tests with population sizes of

500 and 1,000, respectively. Tables 29 and 30 show the population statistics. Although

Table 28 has one excellent solution, and several very good ones, the overall performance

is poor compared to the results of the control runs. In fact, the values achieved are no

better than the ones in previous tables. The reason for the disappointing results is the

quick convergence caused by the introns. Although there are examples of the best-fit

individual being found after the first 100 generations, the median generation of

convergence is 10 to 16, respectively. The introns are prevalent enough to deter the

beneficial effects of crossover that push the population towards better solutions.

Generation Found Fitness Complexity Introns Dominants Recessives

8 305.992 13 6

3 306.003 13 6

19 306.003 13 6

128 305.985 15 7

8 305.994 15 7

19 305.994 15 7

70 306.003 15 7

3 306.990 13 5

41 306.990 13 5

3 306.992 13 5

39 306.992 13 5

3 307.003 13 5

9 2024.009 13 5

195 306.985 15 6

9 306.994 15 6

6 307.003 15 6

45 307.003 15 6

10 306.990 17 7

139 308.003 13 4 2

47 2.051 17 6 2

7 309.018 15 4 3

Median: 10 306.990 15 6 1

Table 27. Best-Fit Individual for Population Size of 500 with Probability of Mutation of 0.

1
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Generation Found Fitness Complexity Introns Dominants Recessives

10 305.992 13 6

19 305.992 13 6

48 305.992 13 6

8 305.999 13 6

20 306.001 13 6

44 305.981 15 7

14 305.990 15 7

20 305.992 15 7

10 305.994 15 7

11 305.994 15 7

7 306.003 17 8

60 0.044 27 13

17 307.003 13 5

22 1.051 15 6

34 1.051 15 6

47 1.051 15 6

6 306.981 15 6

11 306.981 15 6

16 306.994 15 6

11 308.003 13 4 2

15 307.994 15 5 2

Median: 16 305.994 15 6

Table 28. Best-Fit Individual for Population Size of 1,000 with Probability of Mutation of 0.1
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

17543695 13.684 5.444 0.904 Never 0.010 Never

14292803 11.860 4.486 0.944 Never 0.010 Never

16406734 13.640 4.504 1.822 Never 0.010 Never

13945383 13.688 3.616 2.728 Never 0.010 Never

4970352 11.816 5.346 0.042 Never 0.012 Never

14323678 11.876 5.390 0.042 Never 0.012 Never

14149692 13.628 6.248 0.044 Never 0.012 Never

13897494 11.896 5.378 0.046 Never 0.012 Never

3777730 13.620 6.264 0.048 Never 0.012 Never

3451521 11.888 5.324 0.062 Never 0.012 Never

13455803 11.888 4.506 0.926 Never 0.012 Never

12987416 11.912 4.518 0.928 Never 0.012 Never

4502141 11.888 4.482 0.936 Never 0.012 Never

3499190 13.632 5.360 0.948 Never 0.012 Never

3483406 11.876 4.480 0.950 Never 0.012 Never

4967723 11.808 4.434 0.954 Never 0.012 Never

7816937 11.848 4.458 0.954 Never - 0.012 Never

13110608 11.880 4.464 0.954 Never 0.012 Never

4960141 11.868 4.440 0.962 Never 0.012 Never

2087360 11.912 3.602 1.848 Never 0.012 Never

2098868 13.688 4.456 1.852 Never 0.016 Never

Median:

7816937 11.888 4.504 0.944 0.012

Table 29. Population Statistics for Population Size of 500 with Probability of Mutation of 0.

1
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

13877924 11.842 5.367 0.042 Never 0.011 Never

8321885 13.620 5.388 0.924 Never 0.011 Never

8359798 13.598 6.255 0.044 Never 0.012 Never

8589628 13.638 6.258 0.044 Never 0.012 Never

9616162 11.844 5.366 0.045 Never 0.012 Never

8474073 11.872 5.383 0.045 Never 0.012 Never

9640096 11.836 5.346 0.047 Never 0.012 Never

8150807 13.668 6.250 0.048 Never 0.012 Never

8403883 13.646 5.402 0.926 Never 0.012 Never

8528211 13.612 5.352 0.947 Never 0.012 Never

8955009 11.866 4.475 0.950 Never 0.012 Never

8267034 13.624 4.467 1.839 Never 0.012 Never

8953174 11.866 5.373 0.046 Never 0.013 Never

8974188 11.864 5.376 0.046 Never 0.013 Never

8881179 11.840 5.362 0.048 Never 0.013 Never

9084279 11.836 5.330 0.053 Never 0.013 Never

8647046 11.862 3.593 1.831 Never 0.013 Never

2475556 13.616 5.359 0.932 Never 0.014 Never

2714601 13.620 5.363 0.932 Never 0.015 Never

2609997 13.608 5.335 0.939 Never 0.015 Never

901914 20.466 9.635 0.060 Never 0.016 Never

Median:

8528211 13.598 5.366 0.053
-

0.012

Table 30. Population Statistics for Population Size of 1,000 with Probability of Mutation of 0.1
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The results in the remaining tables support the premise presented in Chapter II

that introns counteract some of the effects of potentially harmful mutations. These runs

had the highest probabilities of mutation and showed the best results.

Tables 3 1 and 35 show the best-fit individuals for a population size of 500 with

probability of mutation of 0.5 and 1.0, respectively. While the median best-fit is similar

to the results from previous runs, 12 out of the 42 runs found a good solution. A

population size of 1,000, shown in Tables 32 and 36, achieves a far better median

solution.

Generation Found Fitness Complexity Introns Dominants Recessives

156 305.993 13 6

31 0.051 15 7

45 305.990 15 7

35 305.992 15 7

30 305.994 15 7

8 305.999 15 7

14 306.003 15 7

96 306.004 15 7

100 306.01

1

15 7

61 0.051 17 8

88 306.992 13 5 1

14 307.001 13 5

19 307.003 13 5

89 1.051 15 6

52 306.994 15 6

47 1.051 17 7

22 307.003 17 7

56 307.018 17 7

6 307.994 15 5 2

12 2.033 21 8 2

166 5.058 25 7 5

Median: 45 305.999 15 7 1

Table 31. Best-Fit Individual for Population Size of 500 with Probability of Mutation 0.5

Keeping track of the median complexities throughout all of the previous tables,

the average best-fit complexity is 15 with a average population complexity of 11.8 and

with little variance. It is possible to achieve a good result with a complexity of 15, but

the examples of such are few. Looking back through the tables, one would see that the
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sporadic good results are often accompanied by a higher complexity. In Tables 31, 32,

35 and 36, the runs that achieved a good result have higher complexities.

Generations Found Fitness Complexity Introns Dominants Recessives

12 305.992 13 6

18 305.992 13 6

27 305.992 13 6

30 306.004 13 6

52 0.051 15 7

27 305.981 15 7

18 305.990 15 7

26 305.992 15 7

38 306.001 15 o •

7

24 306.001 17 8

58 0.046 23 11

35 1.051 15 6

41 1.051 15 6

28 1.046 17 7

13 1.046 19 8

52 1.051 19 8

34 1.051 21 9

99 2.033 17 6 2

56 2.041 19 7 2

111 2.041 19 7 2

52 3.044 27 10 3

Median: 34 2.041 15 7

Table 32. Best-Fit Individual for Population Size of 1,000 with Probability of Mutation of 0.5

The increase in complexity is caused by the mutation operation. There is a 50%

chance of replacing a mutated branch with a new full branch that can extend to a depth of

between one and three. The remaining 50% extend to a depth of one to three, but cannot

be complete subtrees. Which occurs depends on the random seed entered at the

beginning of the run (see Appendix D). In the previous runs with the lower probabilities

of mutation, only replacement by a more complex subtree during crossover could

increase complexity. With the introns causing the average population fitness to fall

within a smaller interval, the range of complexities also narrows. If the range of

complexities is smaller, the population homogenizes because the possible combinations

have been reduced. If the population is homogenous, crossover will simply exchange
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similar subtrees (Similar subtrees are "similar" in composition and complexity.

Exchanging similar subtrees will not drive the population to a better solution).

Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

5179119 12.196 4.720 1.064 Never 0.060 Never

1688189 12.236 4.528 1.070 Never 0.062 Never

1688189 12.236 4.528 1.070 Never 0.062 Never

2413727 12.208 4.436 1.136 Never 0.064 Never

1784396 13.972 6.178 0.260 Never 0.068 Never

777749 13.980 5.278 1.158 Never 0.068 Never

1823219 12.272 5.358 0.258 Never 0.070 Never

1899637 12.268 4.516 1.108 Never 0.070 Never

1786908 12.320 4.524 1.118 Never 0.070 Never

964058 12.272 4.468 1.150 Never 0.070 Never

1934520 12.328 5.350 0.266 Never 0.072 Never

1750736 14.016 4.516 1.992 Never 0.072 Never

1970391 12.320 5.336 0.266 Never 0.074 Never

1777445 14.136 5.350 1.140 Never 0.074 Never

1945367 12.284 3.742 1.832 Never 0.074 Never

187439 16.020 5.442 . 2.052 Never 0.080 Never

711744.9 14.124 6.224 0.286 Never 0.082 Never

761836 14.236 6.176 0.314 Never 0.086 Never

710391 14.164 5.310 1.198 Never 0.086 Never

1597985 14.144 4.550 1.964 Never - 0.088 Never

333071 22.640 4.096 6.338 Never 0.096 Never

Median:

1750736 12.328 4.72 1.118 0.072

Table 33. Population Statistics for Population Size of 500 with Probability of Mutation of 0.5
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Median

Population

Fitness

Median

Population

Complexity

Median

Population

Dominants

Median

Population

Recessives

Generation in

which

Recessives

Disappeared

from Population

Median

Population

Introns

Generation in

which Introns

Disappeared

from

Population

7416162 12.164 5.302 0.256 Never 0.063 Never

7253306 12.194 5.343 0.249 Never 0.064 Never

7401390 12.194 5.316 0.247 Never 0.065 Never

2475923 13.948 6.202 0.259 Never 0.068 Never

2166216 12.258 5.359 0.261 Never 0.072 Never

6619577 12.286 5.367 0.262 Never 0.072 Never

2554523 12.266 5.348 0.263 Never 0.073 Never

6860384 12.294 5.354 0.262 Never 0.074 Never

1755670 14.006 6.214 0.273 Never 0.078 Never

340829 16.340 5.403 2.061 Never 0.082 Never

1684931 14.142 5.368 1.148 Never 0.084 Never

1208383 14.180 5.328 1.195 Never 0.084 Never

909339 15.972 4.588 2.880 Never 0.084 Never

1237112 14.186 5.415 1.147 Never 0.085 Never

268274.5 17.824 5.502 2.937 Never 0.085 Never

1141135 14.148 5.379 1.158 Never 0.086 Never

1247662 14.096 6.202 0.297 Never 0.087 Never

1092638 14.170 5.422 1.145 Never 0.087 Never

1695295 14.102 5.366 1.161 Never 0.087 Never

1114348 14.586 6.236 0.307 Never 0.090 Never

345916 21.026 7.024 2.921 Never 0.091 Never

Median:

1684931 14.102 5.368 0.307 0.084

Table 34. Population Statistics for Population Size of 1,000 with Probability of Mutation of 0.5
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Generation Found Fitness Complexity Introns Dominants Recessives

41 305.992 13 6

50 305.992 13 .0 6

29 305.999 13 6

38 306.004 13 6

189 305.990 15 7

28 305.992 15 7

85 305.990 17 8

108 305.992 17 8

95 306.004 17 8

72 305.992 19 9

100 305.992 19 9

121 305.994 21 10

47 306.994 13 5

16 306.992 15 6

94 1.055 21 9

56 307.003 21 9

194 1.044 29 13

87 2.041 17 6 2

78 2.051 19 1 7 2

113 2.051 19 7 2

88 307.994 21 8 2

Median: 85 305.992 17 7

Table 35. Best-Fit Individual for Population Size of 500 with Probability of Mutation of 1.0
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Generation Found Fitness Complexity Introns Dominants Recessives

65 305.990 13 6

44 305.992 13 6

80 305.992 13 6

51 305.992 15 7

60 305.992 15 7

101 305.992 15 7

85 305.992 17 8

40 305.994 17 8

90 306.990 15 6

36 306.992 15 6

62 1.051 17 7

145 1.051 17 7

15 1.051 19 8

118 1.051 19 8

94 1.038 21 9

51 2.051 21 8 2

98 2.051 21 8 2

120 2.051 21 8 2

172 2.055 27 11 2

110 2.055 29 12 2

57 2.051 31 1 13 2

Median: 80 2.055 17 8 1

Table 36. Best-Fit Individual for Population Size of 1,000 with Probability of Mutation of 1.0
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Median

Population
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Median

Population

Complexity

Median

Population
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Introns
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from
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369003 15.708 5.992 1.264 Never 0.242 Never

328553 17.304 4.506 3.802 Never 0.274 Never

197443 19.664 5.176 4.180 Never 0.274 Never

422245 15.996 5.254 1.692 Never 0.276 Never

332403 15.820 4.336 2.88 Never 0.284 Never

333436 17.356 6.472 1.522 Never 0.302 Never

408208 16.368 5.694 2.060 Never 0.302 Never

443893 16.620 6.236 1.618 Never 0.310 Never

334362 17.188 5.714 2.270 Never 0.320 Never

313742 17.456 6.542 1.710 Never 0.332 Never

338460 16.500 5.628 2.100 Never 0.334 Never

431152 17.204 5.462 1.738 Never 0.366 Never

388229 19.488 7.078 2.158 Never 0.372 Never

349126 19.544 7.106 1.984 Never 0.386 Never

397236 19.512 6.700 2.530 Never 0.388 Never

332500 21.060 7.932 2.494 Never 0.392 Never

376177 17.852 6.032 2.416 Never 0.408 Never

177620 25.096 7.608 4.526 Never 0.490 Never

272637 21.360 5.992 4.394 Never 0.742 Never

188207 29.144 9.044 5.714 Never 0.830 Never

249615 21.904 7.052 3.386 Never 1.062 Never

Median:

333436 17.456 6.032 2.270 0.334

Table 37. Population Statistics for Population Size of 500 with Probability of Mutation of 1.0
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Population
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433491 19.07 7.095 1.852 Never 0.241 Never

417806 18.164 5.115 3.301 Never 0.242 Never

442618 17.898 6.016 2.571 Never 0.245 Never

176416 18.406 5.387 3.147 Never 0.247 Never

376612 18.034 6.274 2.256 Never 0.272 Never

353537 16.178 5.512 2.070 Never 0.275 Never

418223 17.416 6.030 2.031 Never 0.279 Never

181103 22.842 5.808 4.871 Never 0.291 Never

406136 17.814 6.915 1.531 Never 0.292 Never

39681

1

16.770 6.062 1.859 Never 0.301 Never

452653 22.992 6.339 3.894 Never 0.314 Never

378101 18.606 6.744 2.111 Never 0.322 Never

376331 17.204 6.112 2.078 Never 0.324 Never

366344 16.156 4.952 2.761 Never 0.332 Never

197672 24.886 5.692 5.969 Never 0.353 Never

274228 18.664 5.270 3.887 Never .0.387 Never

398919 18.022 7.242 1.261 Never 0.421 Never

381750 17.432 6.437 1.838 Never 0.421 Never

303511 22.28 5.078 5.240 Never 0.629 Never

294490 22.894 5.482 5.266 Never 0.779 Never

253455 23.650 7.848 3.359 Never 1.069 Never

Median:

376612 18.164 6.03 2.571 0.314

Table 38. Population Statistics for Population Size of 1,000 with Probability of Mutation of 1.0
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

While an interesting study, incorporating introns and dominant/recessive genes

into GPSYS- 1.1, as they were implemented in this thesis, showed no improved

performance except in environments featuring a high probability of mutation. Under a

low probability of mutation, the population is mostly affected by the genetic drift,

introduced by adding dominant and recessive genes. Introns cause the fitness to converge

to a local optimum and genetic drift eventually removes the introns from the population

entirely. Recessive genes are the next to succumb to the effects of genetic drift.

Although dominant and recessive genes are implemented to follow Mendel's law of

dominance, the population behaves as if underdominant (see Appendix C). Populations

exhibiting underdominance are subject to the effects of genetic drift because they exhibit

disruptive selection. In disruptive selection, the frequency of occurrence of an allele, or a

function within the gene tree, is based on that allele's initial frequency. If the initial

value is below a certain threshold, the allele frequency will fall to zero due to genetic

drift.

For those populations that do have a lower probability of mutation, but are not

completely affected by genetic drift, introns act to prevent destructive crossovers.

However, because introns cause convergence, they cause the population fitness range to

also fall within a smaller interval. The decreased number of different types of individuals

is accompanied by a decreased chance of conducting a crossover that will produce a

much higher fit offspring.

Under a high probability of mutation, the effects of genetic drift are counteracted

and the population is able to achieve reasonably good results, but never as good as the

unmodified version of GPSYS. The reason for the improved performance in a high

mutation environment is that introns provide a subtree that can be mutated without

affecting the overall fitness of the individual. Additionally, mutations that do not occur

within an intron subtree are allowed to increase the complexity of the gene tree. This

increase allows the gene tree to approach the minimum complexity necessary to find a

good solution.
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B. RECOMMENDATIONS FOR DOD

Although the results achieved in this thesis were not stellar, it does not mean that

the biological mechanisms could not be implemented elsewhere or implemented

differently and found successful. Chapter III provided several examples of work in

which similar ideas were presented, tested, and in some cases, found successful.

C. SUGGESTED FURTHER STUDIES

If one is interested in continuing this work, the first recommendation is to reform

the Chromosome class defined in GPSYS. The chromosome is haploid, but was

modified in this thesis to make it act as if it were diploid. A different approach for

modifying the chromosome would be to link genes together to form true homozygous and

heterozygous gene pairs. These gene pairs can then be connected to form the

chromosome. The difficulty of this approach is that one loses the convenient properties

of a binary tree which are fully exploited in GPSYS. However, the increased complexity

and the actually diploid chromosome have the potential to produce more "life-like," if not

better, results.

If one is interested in applying the biological mechanisms to a different problem,

we suggest that another tool, such as GALib or Avida mentioned in Chapter V, be used.

These tools provide increased functionality and more choices for types of selection and

types of crossover. GALib actually comes configured to make diploid chromosomes.

Additionally, since they are implemented in C++, the programmer has access to pointers

allowing tree manipulations to become more complex than those in GPSYS.

Something that would have helped tremendously in this research would be a

compilation of the plethora of GA and GP tools available. One of the most difficult tasks

of this thesis was to determine which tool to use. A worthwhile thesis would be to

acquire and test the available tools, providing an overview of each tool's strengths and

weaknesses.
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APPENDIX A. A CELL BIOLOGY PRIMER

1. Cell Structure

It is necessary to understand the basic function of each part in the cell,

collectively called organelles, in order to understand the genetic mechanisms described in

this thesis.

A. The Cell Membrane

All cells have this lipid bilayer which protects the inside of the cell from the

outside environment. Although the membrane is fluid and semi-permeable, it provides

the outward structure of the cell.

B. The Nucleus and the Nucleolus

In cells that have a nucleus, this is where the genetic material is found.

Proteins needed inside the nucleus and genetic material used outside the nucleus are

transported via pores through the nuclear membrane that surrounds the nucleus. The

nucleolus, which is usually visible as a dark spot in the nucleus, is the site of ribosome

formation. Those organisms lacking cell nuclei are called procaryotes, whereas those that

do have cell nuclei are called eucaryotes.

C. The Endoplasmic Reticulum (ER)

This organelle is the transport network for molecules targeted for certain

modifications and specific final destinations, as opposed to molecules that float freely in

the cytoplasm. There are two types: rough and smooth. Rough ER has ribosomes

attached to it; smooth does not. The smooth portion is responsible for production of

lipids, such as those used to maintain the cell membrane.

D. The Ribosomes

The organelles are responsible for protein synthesis for the cell. They can be

attached to the ER, or float freely in the cytoplasm.
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E. The Golgi Apparatus or Golgi Complex

This organelle sorts newly made proteins, packages them into small

membrane-bound sacs called vesicles, and sends them to their proper places, both within

and external from the cell. Proteins that are secreted often act as messengers to the

membranes of other cells.

F. The Mitochondria

These organelles are the sites of aerobic respiration and are responsible for

making adenosine triphosphate (ATP), which is the cellular energy source.

G. The Lysosomes

These organelles are small sacks which contain many enzymes. They degrade

waste materials and food within the cell by breaking down molecules of DNA, protein

and lipids into their base components. These base components can then be reused by the

cell.

H. The Peroxisomes

The organelles that are the subcellular location of important metabolic

reactions. They rid the cell of toxic substances. Relative to other organelles, little is

known about how cells maintain and propagate peroxisomes.

I. The Centrioles and Vacuoles

These organelles are only found in plant cells.

J. The Cytoplasm

The cytoplasm includes everything inside the cell membrane, except the

nucleus, and a fluid called the cytosol. Proteins travel around the cell through the cytosol

guided by a network of fibers called the cytoskeleton. The cytoskeleton determines the

shape of the cell and helps it to move.

2. Cell Division

Cellular division occurs by a process called mitosis (see Figure 20). The result of

mitosis is the production of at least two daughter cells, each of which contains the

complete copy of the chromosomes within its nucleus.
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Sexually reproducing organisms also perform a special type of cell division, called

meiosis, to create gametes (see Appendix B, Figure 22). Sexually reproducing organisms

are diploid, whereas their gametes are haploid. Meiosis reduces the chromosome number

in the gamete such that when the gametes from each parent fuse together, a diploid

zygote is formed.

Cell Nucleus with

Chromosomes

2 Daughter

Cells

Figure 20. Mitosis
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APPENDIX B. AN ADDITIONAL MOLECULAR GENETICS PRIMER

The molecular genetics primer provided in Chapter 2 was only an overview of

necessary information. This appendix is provided for the reader who would like to know,

or perhaps needs, additional information.

1. DNA Structure

DNA is a very long, threadlike macromolecule made up of a large number of

deoxyribonucleotides, each composed of a base, a sugar and a phosphate group. The

sugar and phosphate groups are responsible for the physical structure of the DNA
polymer; the base carries the genetic information. These nucleotide bases fall into two

categories: purines and pyrimidines. The purines in DNA are adenine (A) and guanine

(G); the pyrimidines are thymine (T) and cytosine (C).

In 1953, James Watson and Francis Crick deduced the structure of DNA, the

well-known double helix24 . One of the most important aspects of the double helix is the

specificity with which the nucleotide bases are paired: T only pairs with A, and G only

pairs with C. As a result of that strict pairing, one strand of the double helix is the

complement of the other.

2. DNA Replication

When a cell undergoes mitosis (see Appendix A), prior to the actual cell division,

the parent duplicates its chromosomes by a process called DNA replication (see Figure

21). It is important to note that replication is a semi-conservative function, meaning that

of the two strands found in the daughter molecule, one will be directly from the parent

and the other will be newly synthesized. Assuming no error, the complementary chains

acts as templates for each other during the replication. A DNA strand that can replicate is

called a replicon.

-4 There are three forms to the double helix, each of which forms A-DNA, B-DNA, and Z-DNA
respectively. The differences among the three will not be discussed. DNA can also be circular and

supercoiled; the significance of those forms will also not be covered. Its structure does affect its chemical

reactivity, so it is important to mention that there are differences.
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Replication begins at a unique site at which the DNA molecule is cleaved. The

highly specific enzymes used in this cleavage process recognize a palindromic nucleotide

sequence that possesses two-fold rotational symmetry. In other words, if one strand of

DNA has the sequence G-A-A-T-T-C, with a cleavage site between the Ts, the

complementary strand will have the sequence C-T-T-A-A-G with the cleavage also

between the Ts.

Replication is not completely error-free. The affinity of A for T, and G for C

helps to keep copy errors low. Some bacteria have spontaneous mutation rates of 10"7 per

replication, with the more complex fruit fly having a rate of 10" 10
[Ref 26]. Simplifying

greatly, if an incorrect base is connected to the DNA oligomer during replication, a

correction enzyme will usually catch it and remove it before the next base is added.

However, if an error does occur, it is classified as one of the following three mutations:

substitution, insertion or deletion.

Substitution is the replacement of one base pair for another. Replacement of a

purine by a purine or a pyrimidine by a pyrimidine is called a transition. The

replacement of a purine by a pyrimidine (or vice versa) called a transversion.

Substitution is the most common type of mutation because it is not always caught by the

correction enzyme, especially when a tautomer of the base is actually added 25 [Ref 27].

Insertion and deletion are simply the process of adding or deleting one or more

base pairs from the resulting DNA strand. Because of the error-correcting enzymes used,

these mutations are less common during replication. After the DNA is formed, though,

there are types of molecules capable of intercalating between adjacent base pairs. This

can lead to an insertion or a deletion. If not done in multiples of three, the effect of these

mutations is to alter the reading frame of the DNA.

'5 A tautomer is any molecule that has an isomer with which it is in chemical equilibrium.
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Original base ^^m New base

Figure 2 1 . DNA Replication

There are a number of reasons to consider the simplest type of mutation, the

exchange of one base for another. First, base switches reflect the basic accuracy of DNA
replication. Second, many important mutagens act by making single-base changes.

Finally, single-base mutations are critical to evolution, because they change genes in

ways that are subtle enough to yield useful variants. A second important fact is that not

all sites undergo mutation at the same rate; some are hot spots, at which mutations occur

much more often than at most other sites.

Single-base switches are usually reversible, and often the rate of "back" mutation

to the normal nucleotide arrangement is similar in order of magnitude to the rate of

change to the mutant arrangement. This fact represents an important way to distinguish

base switches from more drastic alterations like large deletions, for which the reverse

reaction (called reversion) is impossible. An intermediate case is that of single-base

insertions or deletions; these may revert, but much less often than single-base switches.

Most spontaneous single-base exchanges are simply rare failures in the replication

process, arising when a nucleotide is added to the growing chain even though the

nucleotide does not pair normally with the template base.
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3. DNA Recombination and Transposons

During meoisis, DNA is broken apart and reformed in a process called

recombination (see Figure 22). If the chromosomes break during the process, each may

swap a portion of its genetic material for the matching portion from its mate. This

swapping of genetic material is called a crossover.

Recombination occurs outside of meoisis because it is the method by which DNA
repairs itself. In fact, recombination is initiated by breaks or gaps in the DNA. During

meiosis, the DNA is cut enzymatically in order to initiate the process. Regardless of why

it occurs, it is important to note that the breakage points in the recombinants must lie

between the same nucleotides in the two homologous chromatids, otherwise

recombination would generate new DNA molecules differing in length from the parental

molecules. Complementary base-pairing between DNA strands unwound from two

different chromosomes puts the chromosomes in exact register, so that when crossover

occurs, it occurs between identical, or nearly identical, DNA sequences. Usually these

sequences are two equivalent regions of homologous chromosomes, but crossover can

also occur between homologous segments in nonequivalent regions (as long as the

recombinant survives). Such unequal crossing can cause duplications, insertions and

deletions in chromosomes. Crossing over at nonreciprocal sites is called gene

conversion.

DNA segments can also be moved by site-specific recombination, which is not

guided by homology but can cut and rejoin DNA at precise sites. In general, site-specific

recombination serves some type of regulatory function, such as the formation of antibody

genes. Site-specific recombination has one of two consequences, depending on how the

interacting sites are oriented. Recombination can either remove the intervening segment,

or invert it, which will change how the gene is expressed.
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Although the existence of site-specific recombination can invert or remove DNA
segments, site-specific recombination usually does not affect gene order. That is because

site-specific recombinations are limited and conservative, and in higher organisms often

are not inherited because they occur only in somatic cells. Transposons are different

because they move genes to new and unrelated sites. They are key factors in drug-

resistant bacteria.

The transposon encodes within its sequence the genes that allow it to move.

There are two types: complex and simple. Complex transposons hold one or more genes

in addition to the ones coding for their transposition. Simple transposons, also known as

insertion sequences, only carry the genes necessary for their own transposition. Whether

complex or simple, transposons interrupt or deactivate genes into which they are inserted.

Transposons are identified by a sequence at one end of the gene that is repeated nearly

identically, but oriented oppositely, at the other end. These areas are called inverted

repeats. Although their numbers are very small, they exist in all organisms.

4. Central Dogma of Molecular Biology

Figure 1 in Chapter II is better known as the Central Dogma of Molecular Biology

because it demonstrates how the sequence of a strand of DNA corresponds to the amino

acid sequence of a protein. RNA was the original genetic material, but through evolution,

it became an intermediary between DNA and the protein it encodes in eucaryotic
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There are actually four different types of RNA that are used in gene expression:

messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and small

nuclear RNA (snRNA). mRNA is the template for protein synthesis. An mRNA
molecule is produced for each gene or group of genes that is to be expressed. It is

created from a DNA template, with a double-stranded template being the preferred type.

tRNA is a small RNA that has a very specific secondary and tertiary structure such that it

can bind an amino acid at one end, and mRNA at the other end. It acts as an adaptor to

carry the amino acid elements of a protein to the appropriate place as coded for by the

mRNA. rRNA is one of the structural components of the ribosome. Parts of its sequence

are complementary to regions of the mRNA so that the ribosome knows where to bind to

an mRNA from which to make a protein. snRNA is involved in the machinery that

processes RNA's as they travel between the nucleus and the cytoplasm. RNA does not

use the nucleotide base thymine, but one called uracil (U).

The enzyme that is used to start transcription has to find the beginning of a gene

so that it knows from where to start. There is a particular DNA sequence at the beginning

of genes, called a promoter, that is recognized by this enzyme. It is a unidirectional

sequence on one strand of the DNA that tells the enzyme both where to start and on

which strand to continue. Two common procaryotic promoter consensus sequences are

TATAAT and TTGACA; common eucaryotic protoers are the CAAT and TATAAA

boxes. Both sequences are found at specific locations on the DNA before the precise spot

that mRNA is to begin. The DNA strand from which the mRNA is copied is the antisense

or template strand. The other strand, to which the antisense strand is identical, is the

sense or coding strand.

e
-TTGACA TATAAT

t t
Gene Transcription

Begins at Base Pair
-35 Base Pairs -10 Base Pairs

Figure 23. Promoter Consensus Sequences

Transcription is stopped when the mRNA reaches a termination signal. In

general, the termination signal will be a series of G and C bases that will bind to each

other in a hairpin loop that is followed by a string of U residues. The actual strand of

mRNA produced is complementary to the strand from which it was synthesized and

identical to the other.
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(5 ' -> 3 ATGGAATTCTCGCTC (Coding, sense strand)

(3'<- 50 TACCTTAAGAGCGAG (Template, antisense strand)

(5'-> 30 AUGGAAUUCUCGCUC (mRNA made from Template strand)

Figure 24. Sense and Antisense Strands

If the area to be transcribed contained introns, those areas are excised out and the

remaining sequences are spliced together. Introns nearly always begin with GU and end

with an AG that is preceded by a pyrimidine-rich tract. This consensus sequence is part

of the signal for splicing. Once the introns have been removed, the mature mRNA can

leave the nucleus, and head to the ribosome where the actual protein is synthesized.

Once the mRNA binds to the rRNA of the ribosome, the tRNA can begin to build

the protein. The start signal is the codon AUG found closest to the starting end, with

GUG as a less common substitute. AUG codes for methionine, but this first amino acid

is modified slightly. There are tRNAs for each of the amino acids, and each molecule

contains an amino acid attachment site and a template-recognition site. The template-

recognition site is called an anticodon, which recognizes the codon on the mRNA. The

anticodon aligns with the codon, putting the amino acid in proximity to form peptide

bonds with its neighbors. Translation is completed when a stop signal is reached (UAA,

UAG, and UGA). Post-translational processing of the protein will usually remove the

starting methionine.

5. Amino Acids and Proteins

It is important to point out that the location of each specific amino acid placement

in the protein is exactly correlated with its location along the DNA. This property is

called colinearity. Stated simply, colinearity is the property by which successive amino

acids in a polypeptide chain are coded for by successive regions of a gene.

There are twenty amino acids used in protein synthesis. These amino acids are

divided into two groups, essential and non-essential. Essential amino acids must be

ingested in order to maintain health, whereas non-essential amino acids are produced

within the body (see Figure 25).
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AMINOACID SIGNIFICANT FUNCTION

Alanine (ALA) Non-essential. Found in brain, and central nervous system tissue

Arginine (ARG) Non-essential. Crucial for optimal muscle growth and tissue repair

Asparagine (ASN) Non-essential. Used in metabolic cycles

Aspartic acid (ASP) Non-essential. Aids in the expulsion of ammonia from the body

Cysteine (CYS) Non-essential. Necessary for the formation of skin

Glutamic acid (GLU) Non-essential. Used in many brain functions

Glutamine (GLN) Non-essential. Used to form fibrin clots

Glycine (GLY) Non-essential. Used in making immune system hormones

Histidine(HIS) Non-essential. Found in hemoglobin

Isoleucine (ILE) Essential. Used to make essential biochemical components

Leucine (LEU) Essential. Used to make essential biochemical components

Lysine (LYS) Essential. Helps the body to absorb calcium and form collagen

Methionine (MET) Essential. Principle supplier of sulfur to prevent disorders of the hair,

skin, and nails; regulates the formation of ammonia and creates

ammonia-free urine.

Phenylalanine (PHE) Essential. Used in the brain to produce norepinephrine, a chemical

that transmits signals between nerve cells

Proline (PRO) Non-essential. Important for the functioning of joints and tendons

Serine (SER) Non-essential. Synthesizes fatty acid sheath around nerve fibers

Threonine (THR) Essential. An important part of collagen, Elastin, and enamel protein

Tryptophan (TRP) Essential. Natural relaxant that helps the immune system

Tyrosine (TYR) Non-essential . Transmits nerve impulses to the brain and promotes

functioning of the thyroid, adrenal and pituitary glands
'

Valine (VAL) Essential. Found in muscle tissue

Figure 25. The Amino Acids

6. RNA was the Original Molecule of Heredity

It has been shown that RNA molecules as well as proteins can be enzymes. As a

result of this finding, it was proposed that RNA catalyzed its own replication and

developed other enzymatic activities. DNA was formed by the reverse transcription of

this RNA. DNA replaced RNA as the genetic material because its double helix is a more

stable and more reliable store of genetic information [Ref 28].

Recent analyses of DNA sequences from many genomes provide hints of how

such an early coding system may have been structured. The common characteristic found

in today's DNA is a constancy of the relative positions of purines and pyrimidines with

protein-coding regions. Specifically, codons of the form RNY predominate (where R is a

purine, Y is a pyrimidine, and N can be either), suggesting that all codons may have been

of this type originally. A primitive message composed exclusively of RNY codons could

92



have been translated in only one of the three posssible frames, circumventing the need for

special start signals to fix the reading frame. Interestingly, among the eight amino acids

specified by RNY in today's code are amino acids that are most likely to have been

generated by prebiotic synthesis, as well as those that often appear in meteorites [Ref 29].

If today's genomes are searched for RNY periodicity, the extent of coding regions

and their correct reading frames can usually be identified. Genes that are well expressed

seem to have best preserved the RNY pattern over their entire length. In other genes, the

original RNY message can still be detected but appears badly mutated or is shifted over

parts of the coding region into other reading frames by appropriate deletion-insertion

pairs [Ref 30].

Why might the RNY pattern have been favored during early evolution over other

possible codon patterns? RNY is a self-complementary sequence. Moreover, a repeating

RNY pattern can be perceived in a master tRNA sequence compiled from the several

hundred tRNAs analyzed. Thus, it has been suggested that primitive tRNAs may have

served dual roles as both adaptors and mRNAs. According to this scheme, before

ribosomes appeared, the entire process of gene expression could have been carried out by

a single class of RNA molecules [Ref 31].
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APPENDIX C. POPULATION GENETICS PRIMER

1. Review of Mendelian Genetics

Mendel proposed three laws that have been subsequently expanded, but still

remain the valid rules of heredity. The law of dominance says that in a heterozygote,

which is a diploid organism whose alleles are different at a specific locus, one allele may

conceal the presence of another. The allele expressed in the phenotype is the dominant

trait; the other is the recessive trait. A homozygote is an organism whose alleles are the

same at that locus, whether they both are dominant or both recessive. It is important to

point out that in some organisms the heterozygous phenotype is intermediate between the

homozygous phenotypes, thereby exhibiting neither dominance nor recessiveness. The

law of segregation says that in a heterozygote, two different alleles segregate from each

other during gamete formation so that gametes constitute equally-proportioned single

copies of the genotype of that individual. The law of independent assortment states that

the expression of a gene for any single characteristic is usually not influenced by the

expression of another characteristic. It has subsequently been shown that some genes on

certain chromosomes exhibit non-independence, but this law is true for most cases.

2. How Alleles Differ

There is a subtle but important distinction emphasized in population genetics

about the differences between alleles. Alleles are said to differ by origin if they come

from the same locus on different chromosomes. Two alleles at a specified locus in a

diploid individual are always different by origin. Alleles differ by state in one of two

ways. If the context of the difference refers to the DNA sequence of the alleles, then the

alleles are different by state if they have different DNA sequences. If the context is the

product produced by the allele, the alleles differ by state if and only if they have different

amino acids at a particular site. The final way alleles can differ is by descent; this occurs

when they do not share a common ancestor within a certain finite number of generations.
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3. The Hardy-Weinberg Law

Because it is impossible to describe the genetic structure of a real-world

population by listing all the genotypes within it, relative frequencies of alleles and

genotypes are used. The relative frequencies of alleles and genotypes are determined by

probabilistic reasoning. For example, if a locus has two alleles, al and a2, there are

three possible genotypes: alal, ala2, and a2a2. Each genotype occurs with relative

frequency x\\, x\2, and X22 respectively and ;cn + xn + ^22 = 1. The frequency of the al

allele is jcj 1 + 1/2 x\ 2 and that of a2 is l/2xi2 + *22-

The Hardy-Weinberg law relates allele frequency and genotype frequencies at an

autosomal locus in a randomly mating, infinitely sized population at equilibrium. The

equilibrium state of a single locus is reached if the population is free of other

evolutionary forces such as mutation, migration and genetic drift. Random mating

implies that mates are chosen with complete ignorance of their genotype, degree of

relationship (incest or inbreeding permissible), or geographic locality26 . For the same

genotypes above, the frequency will be p~, 2pq, q~ respectively, where p is the frequency

of the al allele and q is the frequency of the a2 allele. Using this law, it is easy to show

that rare alleles are mostly found in heterozygotes and as a consequence their fate is tied

to the dominance relationship. Thus, dominance is an important factor in evolution.

4. Genetic Drift and the Neutral Theory

In finite populations, random changes in allele frequencies result from variation in

the number of offspring between individuals and, if the species is diploid and sexual,

from Mendel's law of segregation. These random changes are called genetic drift.

Genetic drift affects evolution in two important ways—it acts as a dispersive force that

removes genetic variation and it affects the probability of survival of new mutations.

Mutation counters the dispersive force by putting variation back into the population. The

neutral theory claims that much molecular variation is due to the interaction of drift and

mutation.

Genetic drift is an evolutionary force that changes both allele and genotype

frequencies, but its effects are very weak in large populations. Roughly speaking, the

26 A description of the genetic structure of the population must include a geographic component if the

ultimate goal is to understand the evolutionary forces responsible for genetic variation.
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time required for genetic drift to reduce the heterozygosity of the population by one-half

is proportional to the population size. Its effects are much more pronounced on rare

alleles and on small, subdivided populations with low migration rates. In the case of

mutations, as long as the mutation is a neutral mutation (the end products are functionally

the same), then the rate of substitution of the mutation in the population is the same as the

mutation rate; the rate of substitution does not depend on the population size [Ref 32].

The neutral theory claims that most allelic variation and substitutions in proteins

and DNA are neutral. It is called Non-Darwinian evolution because most substitutions

are due to genetic drift, not natural selection.

5. Natural Selection and Dominance

Natural selection is the evolutionary force most responsible for adaptation to the

environment. Natural selection changes allele frequencies, but only works when the

genotypes have different fitnesses27 . The dominance relationships between alleles

affecting fitness thus affect the outcome of the selection.

The concept of fitness in biological organisms is typically associated with the

probability that an individual will survive to adulthood in order to reproduce. The

probability of survival, or the fraction of individuals that survive, will in general, depend

on the genotype and this probability is better known as viability. Thinking of viability in

terms of the fraction of individuals that survive to adulthood makes it easier to see that

the frequency of the genotype after selection is proportional to the genotype's original

frequency multiplied by its viability (see Table 39). It is also easier to compare the

relative frequencies of genotypes since absolute fitness is a difficult quantity to determine

and the individual fitness may include non-genotype influences.

Using the information in Table 39, the change in the allele frequency in a single

generation is determined by the equation:

pq\p(wu - wn )+ q(wn - w
22 )]

p wu +2pqwn + q w
22

27 The common fitnesses are individual fitness, genotype fitness, relative fitness and absolute fitness.
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Genotype alal alal alal

Newborn Frequency
2

P 2pq
2

Viability VVn H'12 u'22

Relative Post

Selection Frequency

2 ,~
p \V\\/W 2pq W12/W

2 ,

—
*

' W - a constant of proportionality, known as the mean fitness of the population

Table39. Relative Post Selection Frequency

Mendel described complete dominance in which one allele clearly masked the

existence of the other allele. However, incomplete dominance, overdominance and

underdominance are the most interesting to evolution because most cases of complete

dominance abounds for morphologic traits. The type of dominance is determined by a

parameter, h, called the heterozygous effect, when comparing the relative fitness between

genotypes. It is a measure of the fitness of the heterozygote relative to the selective

difference between the two homozygotes (see Figure 26).

Genotype alal alal alal

Relative

fitness

1 I-/25* \-s

^s-selection coefficient

h = al dominant, al recessive

/? = 1 al recessive, al dominant

< h < 1 incomplete dominance

h < overdominance

h > 1 underdominance

\-hs = W12/ wn

1 -5 = W22/ W\ 1

Figure 26. Relative Fitness of a One Locus, Two Allele Genotype
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By using the relative frequencies, the change in the allele frequency can be

rewritten as

pqs[ph + q(\-h)]
AsP =

w

and the mean fitness for the population becomes w — 1 - 2pqhs -q 2
s

.

The three evolutionary significant types of dominance are closely associated with

the three types of natural selection. Incomplete dominance is linked with directional

selection, overdominance with balancing selection, and underdominance with disruptive

selection. Directional selection is the type of selection to which Darwin unknowingly

referred since population genetics was not yet in existence. This type of selection implies

that the fitness of alal exceeds that of ala2, which in turn exceeds that of a2a2. This

occurs with incomplete dominance (0 < h < 1). As a result, the frequency p is always

increasing (see Figure 27). The rate by which p changes is strongly dependent on p itself.

Evolution proceeds very slowly when there is little genetic variation (p is close to zero. or

close to one), and is most effective when p = Vz.

„

<
a. 0.015

a

u

c

Ui

0.01

0.005

nu

^

Allele Frequency p

\

Figure 27. Change in the Allele Frequency in a Single Generation

Balanced selection occurs when there is overdominance in the allele. From

Figure 28, when p is close to zero, the allele frequency will increase; when close to one,

the allele frequency will decrease. There is a point in between, called the equilibrium

value, at which the frequency no longer changes.
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Figure 28. Balanced Selection

In disruptive selection, the allele frequency depends on the initial frequency. If

the initial value is less than the equilibrium value, the frequency will approach zero. The

allele frequency will approach one if it is greater than the equilibrium value. If the two

are equal, there will be no change at all. A small change in p, such as that caused by

genetic drift, will cause the allele frequency to move from the equilibrium value. This

will only happen when there is underdominance (see Figure 29).
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Figure 29. Disruptive Selection
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APPENDIX D. MODIFIED GPSYS-1.1 CODE AND NEWLY WRITTEN CODE

1. CHROMOSOME

Copyright Adil Qureshi - 1997
This code is part of gpsys Release 1.1

and is released for non-commercial use only.
Questions, comments etc should be forwarded to :-

Adil Qureshi
University College London,
Department of Computer Science,
Gower St,

London WC1E 6BT, UK.

Tel: + 44 (0)171 380 7777 x4436
Fax: +44 (0)171 387 1397
email: A.Qureshi@cs.ucl.ac.uk
URL : http://www.cs.ucl.ac.Uk/staff/A.Qureshi/

Modified by Captain Loretta Vandenberg
Naval Postgraduate School
Monterey, CA 93 943

All changes are marked. Some additional comments
Added to the original code in order to clarify
Usage

.

package gpsys

;

I
* *

* A Chromosome defines an evolvable gene tree.
*

* @see gpsys .Terminal
*

* ©version 1.1, 3 0th June '97

* ©author <a href = "mailto : A. Qureshi@cs .ucl . ac .uk">Adil Qureshi</a>
* <address>Department of Computer Science, </address>
* <address>University College London, </address>
* <address>Gower St , </address>
* <address>London WC1E 6BT, </address>
* <address>UK. </address>
*

* ©author <a href = "mailto : shirley@cs .nps .navy .mil" >Rett Vandenberg</a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey , CA 93943</address>
*

*/
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public class Chromosome implements Cloneable, Java . io . Serializable {

* The Gene at the top of the tree.
* this gene is evaulated when this ADF needs evaluation
*

* @see Gene
*/

public Gene treeTop;

* The GPParameters used to create this chromosome
*

* @see GPParameters
*/

public GPParameters gpParameters;

I * *

* index into the adf array in the gpParameters. It is used to
*acces the ChromosomeParameters associated with this chromosome.
*/

int adf

;

* A count of the total number of nodes in this tree.
*/

int complexity;

* Added by Rett Vandenberg
* A count of the total number of introns in this tree.
*/

int introns

;

* Added by Rett Vandenberg
* A count of the total number of dominants in this tree.
*/

int dominants;

* Added by Rett Vandenberg
* A count of the total number of recessives in this tree
*/

int recessives;
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* Constructs a new Chromosome using the specified
* GPParameters

.

*

* @param p the GPParameters to use.
* @param adflndex the index into the adf array
* in GPParameters the latter
* defines ChromosomeParameters
* for each adf

.

* ©exception TypeException If there was a typing problem
* during tree generation. For
* example a Function or Terminal
* of the required type could not
* be found.
*/

Chromosome (GPParameters p, int adflndex) throws TypeException {

gpParameters = p;
adf = adflndex;
// always start the tree with a function
int createMethod = p . adf [adf Index] . createMethod;
if (createMethod == ChromosomeParameters . CREATE_GROW) {

treeTop = new
GeneFunctionGrow

(

p. adf [adf Index] .maxDepthAtCreation - 1,

p . adf [adf Index] . type, p, adf Index)

;

}else if (createMethod == ChromosomeParameters . CREATE_FULL )

{

treeTop = new
GeneFunctionFull

(

p. adf [adf Index] .maxDepthAtCreation - 1,

p. adf [adf Index] . type, p, adflndex);
}else { // assume (createMethod == CREATE_RAMP_HALF_AND_HALF)

// ramp up the depth;
//minimum - 2, maximum = maxDepthAtCreation
double depthValue =

p . adf [adf Index] .maxDepthAtCreation *

(p.creationlndex / p.populationSize) ;

int maxDepth =

(depthValue < 2) ? 2 : (int) depthValue;

// half the population created via grow,
// and the other via full
if ((p.creationlndex % 2) == 0){

treeTop = new GeneFunctionGrow (maxDepth,
p .adf [adf Index] . type, p, adflndex);

}else {

treeTop = new GeneFunctionFull (maxDepth,
p .adf [adf Index] . type, p, adflndex);

}

}

complexity = treeTop . complexity ()

;

//added by Rett Vandenberg
introns = treeTop. introns ()

;

dominants = treeTop . dominants ()

;

103



recessives = treeTop . recessives ()

;

}

* Creates a new child Chromosome which is a mutation of the
* mother

.

*

* @param mum is the mother Chromosome.
* ©return a reference to a child Chromosome which is a
* mutation of the mother
*

*/

public static Chromosome mutate (Chromosome mum) {

//a convenience variable
GPParameters gpParameters = mum. gpParameters

;

// child is initially a clone of it's mum
Chromosome child = mum. deepClone ()

;

// pick a branch at random from the child
GeneBranch branch = new

GeneBranch (gpParameters . rng, child. treeTop) ;

// just for convenience
int depth =

gpParameters . adf [child. adf] .maxDepthMutation - 1;

// now generate the mutant branch using FULL or
//GROW methods
Gene newBranch

;

if ( (gpParameters . rng .next Int ( ) % 2) ==0) {

// use FULL method
try {

newBranch = new
GeneFunctionFull (depth,

branch. child. p. type,
gpParameters, child. adf);

}

catch (TypeException e) {

newBranch = null;
}

} else {

// use GROW method
try {

newBranch = new
GeneFunc t ionGrow ( depth

,

branch. child. p. type,
gpParameters, child. adf);

}

catch (TypeException e) {

newBranch = null;
}

}

if (newBranch == null) {
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try {

newBranch = new GeneTerminal (depth,
branch . child

.
p . type

,

gpParameters , child. adf)

}

catch (TypeException e) {

return child;

}

}

// if the root of child's tree was mutated, replace
// the whole tree
if (branch. parent == null) {

child. treeTop = newBranch

;

}

else {

// save the branch to be mutated
Gene tmp =

( (GeneFunction) branch. parent ) .arguments [branch. index]

;

// update the tree to include the mutated branch
((GeneFunction) branch. parent ) . arguments [branch. index] =

newBranch

;

// if the mutated tree is too big, child == mum
if (child. treeTop . depth ( ) > gpParameters . adf [child. adf ] .maxDepth)

{

((GeneFunction) branch. parent ) . arguments [branch . index] = tmp;
gpParameters . observer . diagnosticUpdate

(

"Throwing away a tree after mutation");
}

}

child. complexity = child. treeTop . complexity ()

;

//added by Rett Vandenberg
child. introns = child. treeTop. introns () ;

child. dominants = child . treeTop . dominants ()

;

child. recessives = child. treeTop. recessives ()

;

return child;

* Creates a new child Chromosome via crossover of the mother
* and father Chromosomes

.

*

* @param mum is the mother Chromosome. The child is
* actually a copy of the mother with one branch
* exchanged with a branch from the father.
* @param dad is the father Chromosome.
* ©return a reference to a new child Chromosome.
*/
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public static Chromosome cross (Chromosome mum, Chromosome dad)

{

//a convenience variable
GPParameters gpParameters = mum. gpParameters;

//this does not prevent it, it just warns you it is happening
//I never saw it occur
if (mum == dad) {

gpParameters . observer . diagnosticUpdate

(

"Danger - XOVER is incestious " )

;

}

// make the child a clone of mum
Chromosome child = mum. deepClone () ,-

// pick a brach at random from the child to replace
GeneBranch branchMum =

new GeneBranch (gpParameters . rng, child . treeTop)

;

// pick a branch from dad to replace it with
// the new branch must return the same type as the
/ / mum branch
GeneBranch branchDad = new

GeneBranch ( gpParameters . rng , dad . treeTop

,

branchMum. child. p . type)

;

// if now such branch found in dad, child == mum
if (branchDad. child == null) {

gpParameters . observer . diagnosticUpdate

(

"Couldn't find compatible branch in dad during crossover")
return child;

}

// make a copy of dad's branch
Gene newBranch = branchDad. child. deepClone ()

;

// if replacing root of the child tree, tree = copy
// of dad's branch
if (branchMum. parent == null) child. treeTop = newBranch;
else {

// save the branch being replaced
Gene tmp =

( (GeneFunction) branchMum. parent)

.

arguments [branchMum. index]

;

// replace the branch with one from dad
( (GeneFunction) branchMum. parent)

.

arguments [branchMum. index] - newBranch;

//Added by Rett Vandenberg
//dominant/recessive test
//Based on Mendelian heredity

106



}

//double dominant parents make a double dominant child
if (tmp. allele == 2 && newBranch . allele == 2) {

child. treeTop .allele = 2;

//One double dominant and One double recessive can only
//produce heterozygous kids
} else if (tmp. allele == 2 && newBranch. allele == 0) {

child. treeTop. allele - 1;

} else if (tmp. allele == && newBranch. allele == 2) {

child. treeTop .allele = 1;

//two double recessives can only produce recessive child
} else if (tmp. allele == && newBranch. allele ==0) {

child. treeTop. allele = ;

//if you have a heterozygous parent, and a double recessive
//parent, you have a 50% chance of a heterozygous child
//and a 50% chance for a double recessive child
} else if ((tmp. allele == 1 && newBranch. allele == 0)

(tmp. allele == && newBranch. allele ==1)) {

//this allows a 50% chance based on the
//random seed provided
if ( (gpParameters . rng.nextlnt ( ) % 2) ==0) {

child . treeTop . allele = 1

;

} else {child. treeTop. allele = 0;}

//a double dominant parent with a heterozygous parent
} else if ((tmp. allele == 2 && newBranch. allele == 1)

(tmp. allele == 1 && newBranch. allele ==2)) {

//50% chance of double dominant or heterozygous
if ( (gpParameters . rng.nextlnt ( ) % 2) ==0) {

child. treeTop . allele = 2

;

} else {child. treeTop. allele = 1;}

} else {

//both parents are heterozygous
//there's 50% chance of a heterozygous child
if ( (gpParameters . rng .nextlnt ( ) % 2) ==0) {

child. treeTop. allele = 1

;

//a 25% chance of a double dominant
} else if ( (gpParameters .rng.nextlnt ( ) % 4) ==0) {

child. treeTop. allele = 2;

//technically, a 25% chance for a double recessive, but
//one cannot implement the ambiguity, so this may or may
//not ever achieve a 25%
} else {child. treeTop .allele = 0;}

// if the resulting tree is too big, child == mum
if (child. treeTop .depth ( ) > gpParameters .adf [child. adf] .maxDepth) {

( (GeneFunction) branchMum. parent ). arguments [branchMum. index] =

tmp;
gpParameters . observer . diagnosticUpdate

(
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"Throwing away a tree after Xover")
}

}

child. complexity = child. treeTop . complexity ()

;

//added by Rett Vandenberg
child. introns = child. treeTop. introns ()

;

child . dominants = child. treeTop . dominants ()

;

child . recessives = child. treeTop . recessives ()

;

return child;
}//end cross

/ * *

* Makes a deep copy of this Chromsome by making a copy of the entire
* data graph.
*

* ©return a reference to a copy of this Chromosome.
*/

public Chromosome deepClone() {

Chromosome clone = null;
try {

clone = (Chromosome) this .clone ()

;

clone . treeTop = this . treeTop . deepClone ()

;

}

catch (CloneNotSupportedException e) {

// will never happen as long as we implement Cloneable
}

return clone;
}

* Calculates the number of nodes in the Gene tree of this Chromosome
*

* ©return the number of nodes in the Gene tree.
*/

public int complexity () {return complexity;}

* Added by Rett Vandenberg
* Calculates the number of introns in the Gene tree of this
* Chromosome.
*

* ©return the number of introns in the Gene tree.
*/

public int introns ( ) {return introns;}

* Added by Rett Vandenberg
* Calculates the number of dominants in the Gene tree of
* this Chromosome.
*

* ©return the number of introns in the Gene tree.
*/
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public int dominants ( ) {return dominants;}

* Added by Rett Vandenberg
* Calculates the number of introns in the Gene tree of this
* Chromosome.
*

* ©return the number of introns in the Gene tree.
*/

public int recessivesO {return recessives; }

* Evaluates the chromosome so that it returns an Object
* reference.
*

* (iparam i is the Individual being evaluated.
* ©return a reference to an Object returned by evaluating the
* Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public Object evaluateObject ( Individual i) throws
EvaluationException {return treeTop . evaluateObject ( i) ;

}

* Evaluates the chromosome so that it returns a byte.

* iparam i is the Individual being evaluated.
* ©return a byte returned by evaluating the Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public byte evaluateByte (Individual i) throws
EvaluationException {return treeTop. evaluateByte (i) ;

}

* Evaluates the chromosome so that it returns a byte.
*

* ©param i is the Individual being evaluated.
* ©return a byte returned by evaluating the Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public short evaluateShort { Individual i) throws
EvaluationException {return treeTop. evaluateShort (i) ;

}

* Evaluates the chromosome so that it returns an int.
*

* ©param i is the Individual being evaluated.
* ©return an int returned by evaluating the Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/
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public int evaluatelnt ( Individual i) throws
EvaluationException {return treeTop . evaluatelnt ( i );

}

* Evaluates the chromosome so that it return's a long.
*

* ©param i is the Individual being evaluated.
* ©return a long returned by evaluating the Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public long evaluateLong ( Individual i) throws
EvaluationException {return treeTop . evaluateLong ( i) ;

}

* Evaluates the chromosome so that it returns a float.
*

* ©param i is the Individual being evaluated.
* ©return a float returned by evaluating the Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public float evaluateFloat ( Individual i) throws
EvaluationException {return treeTop. evaluateFloat (i) ;

}

* Evaluates the chromosome so that it returns a double.
*

* ©param i is the Individual being evaluated.
* ©return a double returned by evaluating the Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public double evaluateDouble ( Individual i) throws
EvaluationException {return treeTop. evaluateDouble ( i) ;

}

* Evaluates the chromosome so that it returns a char.
*

* ©param i is the Individual being evaluated.
* ©return a char returned by evaluating the Gene tree.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public char evaluateChar (Individual i) throws
EvaluationException {return treeTop . evaluateChar ( i );

}

* Evaluates the chromosome so that it returns a boolean.
*

* ©param i is the Individual being evaluated.
* ©return a boolean returned by evaluating the Gene tree
* ©exception EvaluationException If there is an
* evaluation failure.
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*/

public boolean evaluateBoolean (Individual i) throws
EvaluationException {return treeTop . evaluateBoolean ( i );

}

* Generates a String representing a dump of the Gene tree for
* this Chromosome.
*

* ©return a String representing the Gene tree for this Chromosome.
*/

public String toString() {return treeTop. toString ();

}

}//end Chromosome

2. GENE

Copyright Adil Qureshi - 1997
This code is part of gpsys Release 1.1
and is released for non-commercial use only.
Questions, comments etc should be forwarded to :-

Adil Qureshi
University College London,
Department of Computer Science,
Gower St,

London WC1E 6BT, UK.
Tel: + 44 (0)171 380 7777 x4436
Fax: +44 (0)171 387 1397
email: A.Qureshi@cs.ucl.ac.uk
URL : http://www.cs.ucl.ac.Uk/staff/A.Qureshi/

Modified by Captain Loretta Vandenberg

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93 943

package gpsys;

/ * *

* A Gene is a node in a GP tree. A Gene can be either a function or a
* terminal, hence this abstract class has been subclassed to
* GeneFunction and GeneTerminal which are actually used.
*

* ©version 1.1, 3 0th June '97

* ©author <a href="mailto: A.Qureshi@cs .ucl .ac .uk" >Adil Qureshi</a>
* <address>Department of Computer Science, </address>
* <address>University College London, </address>
* <address>Gower St , </address>
* <address>London WC1E 6BT, </address>
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* <address>UK.</address>
*

* ©author <a href="mailto : shirley@cs .nps .navy .mil ">Rett Vandenberg</a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey, CA 93943</address>
*/

public abstract class Gene implements Java . io. Serializable {

* The primitive associated with this Gene which is either a
* Function or a Terminal.
*/

public Primitive p;

* Added by Rett Vandenberg
* A flag to determine whether or not this particular gene is
* an intron or not. It will always be set to false for
* terminals, and false for non-intron function genes
*/

public boolean intron;

* Added by Rett Vandenberg
* A flag to determine whether or not this particular gene is
* a dominant or recessive. It will always be set to false for
* terminals intron function genes. Recessive functions will
* be set to true. Dominant functions are those provided.
*/

public boolean dominant;

* Added by Rett Vandenberg
* An integer to determine whether or not this particular gene is
* a dominant or recessive. Two is assigned for double

dominants

,

* 1 for heterozygous dominant, and for double recessive.
* Initial population is assigned values at random. Checked
* checked during cross (see Chromosome) to determine the value
* given to offspring.
*/

public int allele;

'* Calculates the number of nodes (Genes) in the subtree
* starting at this node (Gene)

.

*/

abstract public int complexity ()

;

/ * *

* Calculates the maximum depth of the subtree starting at
* this node (Gene)

.

*/
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abstract public int depth (),-

* Added by Rett Vandenberg
* An abstract function call that will determine the number
* of introns in a given sub-branch. It must be instantiated
* by the GeneFunction class
*/

abstract public int introns ()

;

* Added by Rett Vandenberg
* An abstract function that will determine the number of
* dominants in a given sub-branch.
* It must be instantiated
* by the GeneFunction class
*/

abstract public int dominants ()

;

/ * *

* Added by Rett Vandenberg
* An abstract function that will determine the number of
* recessives in a given sub-branch.
* It must be instantiated
* by the GeneFunction class
*/

abstract public int recessives ()

;

* Added by Rett Vandenberg
* Intron test. Used in Fitness evaluation
*/

public boolean isIntron() {

if (this. intron == true) {return true;}
else {return false;}

}

/ * *

* Added by Rett Vandenberg
* Dominant test. Used in Fitness evaluation
*/

public boolean isDominant ( ) {

if (this . dominant == true) { return true; }

else {return false;}
}

/ * *

* Added by Rett Vandenberg
* Recessive test. Used in Fitness evaluation
*/

public boolean isRecessive ( ) {

if (this .dominant == false) { return true; }

else {return false;}

}
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* Evaluate this Gene as a Gene that returns an Object when
* evaluated.
*

* ©param i the Individual being evaluated.
* ©return An Object which is the evaluation result.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public abstract Object evaluateObject (Individual i)

throws EvaluationException;

* Evaluate this Gene as a Gene that returns a byte when evaluated.
*

* ©param i the Individual being evaluated.
* ©return A byte which is the evaluation result.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public abstract byte evaluateByte (Individual i)

throws EvaluationException;

* Evaluate this Gene as a Gene that returns a short when
evaluated.

*

* ©param i the Individual being evaluated.
* ©return A short which is the evaluation result.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public abstract short evaluateShort (Individual i)

throws EvaluationException;

* Evaluate this Gene as a Gene that returns a int when evaluated.
*

* ©param i the Individual being evaluated.
* ©return A int which is the evaluation result.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public abstract int evaluatelnt (Individual i)

throws EvaluationException;

* Evaluate this Gene as a Gene that returns a long when evaluated.
*

* ©param i the Individual being evaluated.
* ©return A long which is the evaluation result.
* ©exception EvaluationException If there is an evaluation
* failure.
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*/

public abstract long evaluateLong (Individual i)

throws EvaluationException;

* Evaluate this Gene as a Gene that returns a float when
evaluated.

*

* ©param i the Individual being evaluated.
* ©return A float which is the evaluation result.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public abstract float evaluateFloat ( Individual i)

throws EvaluationException;

/ * *

* Evaluate this Gene as a Gene that returns a double when
* evaluated.
*

* ©param i the Individual being evaluated.
* ©return A double which is the evaluation result.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public abstract double evaluateDouble (Individual i)

throws EvaluationException;

* Evaluate this Gene as a Gene that returns a char when
* evaluated.
*

* ©param i the Individual being evaluated.
* ©return A char which is the evaluation result.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public abstract char evaluateChar (Individual i)

throws EvaluationException;

* Evaluate this Gene as a Gene that returns a boolean when
* evaluated.
*

* ©param i the Individual being evaluated.
* ©return A boolean which is the evaluation result.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public abstract boolean evaluateBoolean (Individual i)

throws EvaluationException;
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/ * *

* Makes a deep clone of this Gene, i.e. the Gene and all of its
* subtrees

.

* ©return A clone of the Gene and its subtrees.
*/

abstract public Gene deepClone ( )

;

* Converts the Gene and its subtrees into a String.
*

* ©return A String representing the Gene and any subtrees.
*/

abstract public String toStringO;
} //End Gene

3. GENEFUNCTION

/*

Copyright Adil Qureshi - 1997
This code is part of gpsys Release 1.1
and is released for non-commercial use only.
Questions, comments etc should be forwarded to :-

Adil Qureshi
University College London,
Department of Computer Science,
Gower St,

London WC1E 6BT, UK.
Tel: + 44 (0)171 380 7777 x4436
Fax: +44 (0)171 387 1397
email: A.Qureshi@cs.ucl.ac.uk
URL : http://www.cs.ucl.ac.uk/staff/A-Qureshi/

Modified by Captain Loretta Vandenberg
Naval Postgraduate School
Monterey, CA 93943

*/

package gpsys

;

/ * *

* A GeneFunction is a Gene tree representing a function call

.

* A GeneFunction therefore has Gene arguments (branches or subtrees)
*

* ©see gpsys. Gene
* ©see gpsys .GeneFunctionGrow
* ©see gpsys .GeneFunctionFull
*

* ©version 1.1, 3 0th June '97

* ©author <a href = "mailto : A.Qureshi@cs . ucl . ac .uk" >Adil Qureshi</a>
* <address>Department of Computer Science, </address>
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* <address>University College London, </address>
* <address>Gower St , </address>
* <address>London WC1E 6BT, </address>
* <address>UK. </address>
*

* ©author <a href="mailto: shirley@cs .nps .navy .mil">Rett Vandenberg</a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey , CA 93943</address>
*/

public abstract class GeneFunction extends Gene implements Cloneable {

/ * *

* The arguments for this function call.. The length of this array
is

* equal to the number of arguments taken by the function referenced
* by this Gene.
*/

Gene [ ] arguments

;

/ * *

* Evaluate this Gene as Function returning an Object reference.
*

* ©param i the individual to which this Gene belongs
* ©return An Object which is the result of the evaluation.
* ©exception EvaluationException If there is an evaluation
* failure.
*

*/

public Object evaluateObject ( Individual i) throws
EvaluationException {

return ((Function) p) .evaluateObject ( i , arguments);
}

* Evaluate this Gene as Function returning a byte.
*

* ©param i the individual to which this Gene belongs
* ©return A byte which is the result of the evaluation.
* ©exception EvaluationException If there is an evaluation
* failure.
*

*/

public byte evaluateByte (Individual i) throws
EvaluationException {

return ((Function) p) . evaluateByte (i , arguments);
}

* Evaluate this Gene as Function returning a short.
*

* ©param i the individual to which this Gene belongs
* ©return A short which is the result of the evaluation.
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* ©exception EvaluationException If there is an evaluation
* failure.
*

*/

public short evaluateShort ( Individual i) throws
EvaluationException {

return ((Function) p) . evaluateShort ( i , arguments);
}

* Evaluate this Gene as Function returning an int.
*

* @param i the individual to which this Gene belongs
* ©return An int which is the result of the evaluation.
* ©exception EvaluationException If there is an evaluation
*

.
failure.

*

*/'

public int evaluatelnt (Individual i) throws
EvaluationException {

return ((Function) p) . evaluatelnt (i , arguments);
}

* Evaluate this Gene as Function returning a long-.
*

* ©param i the individual to which this Gene belongs
* ©return A long which is the result of the evaluation.
* ©exception EvaluationException If there is an
* evaluation failure.
*

*/

public long evaluateLong (Individual i) throws
EvaluationException {

return ((Function) p) . evaluateLong ( i , arguments);
}

* Evaluate this Gene as Function returning a float.
*

* ©param i the individual to which this Gene belongs
* ©return A float which is the result of the evaluation.
* ©exception EvaluationException If there is an
* evaluation failure.
*

*/

public float evaluateFloat (Individual i) throws
EvaluationException {

return ((Function) p) . evaluateFloat ( i , arguments);

}

* Evaluate this Gene as Function returning a double.
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* @param i the individual to which this Gene belongs
* ©return A double which is the result of the evaluation.
* ©exception EvaluationException If there is an
* evaluation failure.
*

*/

public double evaluateDouble (Individual i) throws
EvaluationException {

return ((Function) p) . evaluateDouble ( i , arguments);

}

* Evaluate this Gene as Function returning a char.
*

* ©param i the individual to which this Gene belongs
* ©return A char which is the result of the. evaluation.
* ©exception EvaluationException If there is an
* evaluation failure,
*

*/

public char evaluateChar ( Individual i) throws
EvaluationException {

return ((Function) p) . evaluateChar (i , arguments)

;

}

/ * *

* Evaluate this Gene as Function returning a boolean.
*

* ©param i the individual to which this Gene belongs
* ©return A boolean which is the result of the evaluation.
* ©exception EvaluationException If there is an
* evaluation failure,
*

*/

public boolean evaluateBoolean ( Individual i) throws
EvaluationException {

return ((Function) p) . evaluateBoolean (i; arguments)

}

* Get the maximum depth of this Gene tree
*

* ©return the maximum depth of the tree.
*

*/

public int depth () {

// the depth is initially
int d = 0;

// get the maximum depth of each branch
for (int i = 0; i < arguments . length; i++) {

int tmp = arguments [i] . depth ( )
,-
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d = (d < tmp) ? tmp : d;

}

// the maximum depth of this Gene is the 1 + the maximum depth
// of all the branches
return d + 1

;

}

* Get the number of Genes in this Gene tree.
*

* ©return the number of Genes in this Gene tree.
*/

public int complexity!) {

// the total number of Genes is initially one.
int sum = 1

;

// add the total number of Genes in each argument
for (int i = 0; i < arguments . length; i++) {

sum += arguments [ i] . complexity ()

;

}

// the total is this sum
return sum;

}

* Added by Rett Vandenbeig
* Get the number of Introns in this Gene tree.
*

* ©return the number of Introns in this Gene tree.
*/

public int introns ( ) {

int sum = ;

//if the gene starting the count is an intron
//the second condition should never have to be used
//especially if the definition of introns is expanded
//to other functions besides Nop
if ( this . islntron ( )

|

|

this . toString( ) .startsWith( " (Nop" ) ) {

sum += 1;

}

// add the total number of introns in each argument
for (int i = 0; i < arguments . length; i++) {

sum += arguments [ i ]. introns ()

;

}

// the total is this sum
return sum;
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* Added by Rett Vandenberg
* Get the number of Dominants in this Gene tree.
*

* ©return the number of dominants in this Gene tree.
*/

public int dominants ( ) {

int sum = ;

//if the gene starting the count is a dominant
if ( this . isDominant ( ) ) { sum += 1; }

// add the total number of dominants in each argument
for (int i = ; i < arguments . length; i++) {

sum += arguments [i] . dominants ()

;

}

// the total is this sum
return sum;

}

* Added by Rett Vandenberg
* Get the number of Recessives in this Gene tree.
*

* ©return the number of recessives in this Gene tree.
*/

public int recessives ( ) {

int sum = ;

//if the gene starting the count is a recessive
if ( this . isRecessive ( ) ) { sum += 1; }

// add the total number of introns in each argument
for (int i - 0; i < arguments . length; i++) {

sum += arguments [ i] . recessives ()

;

}

// the total is this sum
return sum;

/ * *

* Make a clone of this Gene tree, cloning all subtrees.
*

* ©return a clone of this Gene.
*/

public Gene deepClone() {

// the clone is initially empty
GeneFunction clone = null;
try {

// now clone the Gene, and then make arguments refer to
// clones too
clone - (GeneFunction) this .clone ()

;
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clone. p = p. instance ()

;

clone . arguments = new Gene [arguments . length] ;

for (int i = ; i < arguments . length; i + +){
clone .arguments [i] = (Gene) arguments [ i] . deepClone (

)

}

}

catch (CloneNotSupportedException e) {

// will never happen as long as we implement Cloneable
/ / which we do !

!

}

return clone;

}

* Create a String representing this Gene tree.
*

* @return a String representing this tree.
*/

public String toString() {

String s = new String ();

s += "
(

" + p;
for (int i = 0; i < arguments . length; i++){

s += " " + arguments [ i]

;

}

s + = "
)

» ;

return s

;

}

}//End Gene Function

4. GENEFUNCTIONFULL

Copyright Adil Qureshi - 1997
This code is part of gpsys Release 1.1
and is released for non-commercial use only.
Questions, comments etc should be forwarded to :.-

Adil Qureshi
University College London,
Department of Computer Science,
Gower St,

London WC1E 6BT, UK.

Tel: +44 (0)171 380 7777 x4436
Fax: +44 (0)171 387 1397
email: A.Qureshi@cs.ucl.ac.uk
URL : http://www.cs.ucl.ac.uk/staff/A-Qureshi/

Modified by Captain Loretta Vandenberg
Naval Postgraduate School
Monterey, CA 93 943

122



package gpsys

;

* A GeneFunctionFull is a GeneFunction tree created using the Full
* method.
* In the Full method, the tree is full depth along any path from the
* root
* to a leaf.
*

* ©version 1.1, 30th June '97

* ©author <a href="mailto: A.Qureshi@cs .ucl .ac .uk">Adil Qureshi</a>
* <address>Department of Computer Science, </address>
* <address>University College London, </address>
* <address>Gower St , </address>
* <address>London WC1E 6BT, </address>
* <address>UK. </address>
*

* ©author <a href="mailto :.shirley@cs .nps .navy .mil">Rett Vandenberg</a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey, CA 93943</address>
*

*/

public class GeneFunctionFull extends GeneFunction implements Cloneable
{

/ * *

* Create a Gene tree using the Full method. The Full method
* tries to create trees of the maximum specified depth along
* any branch.
*

* @param maxDepth the maximum depth of the Gene
* tree to be generated.
* dparam type the required return type of top
* node in the tree.
* @param gpParameters the GP parameters for this run.
* @param adflndex the index of the
* ChromosomeParameters to used.
* ©exception TypeException If a Function or Terminal of a
* required type could not be
* found.
*

*/

public GeneFunctionFull (int maxDepth, Type type,
GPParameters gpParameters, int adflndex)

throws TypeException {

// get an array of all functions of the required type
Function [] functionsOfType = gpParameters . adf [adflndex]

.

functionsOfTypeAtDepthFull [maxDepth]

.

get (type)

;

if ( functionsOfType == null) {throw new TypeException

(

"no function of type "+type. toString (

)

+" at depth " +maxDepth)

;
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}

// then select a function at random from this array
//and assign to p
int code = gpParameters . rng.nextlnt () %functionsOfType . length ,-

code = (code < 0) ? -code : code;

//added by Rett Vandenberg to count the introns
//will have to change if adding different types of introns, but
//this will do for this particular experiment
if ( functionsOfType [code] . toString ( ) == "Nop" ) {

super. intron = true;
//an intron can never be a dominant gene
super . dominant = false;

//All recessive functions will be implemented starting with
//an 'R'

.

} else if (functionsOfType[code] . toString ( ) . startsWith( "R" ) ) {

super . dominant = false;
//in this particular case, a recessive still adds to the
//fitness of the individual, so it cannot be considered an
/ /intron
super. intron = false;

} else {//they are dominants
super. intron = false;
super . dominant = true;
//at creation, there is a 50% chance of a double dominant
//and a 50% chance of a heterozygous dominant

if ( (gpParameters . rng . nextlnt ( ) % 2) ==0) {

super. allele = 2; //double dominant
} else { super. allele = 1; }

}

Function f = (Function) functionsOfType [code] . instance ()

;

P = f;

// now generate the arguments to this function
arguments = new Gene [ f . argTypes . length]

;

maxDepth--

;

for (int i = ; i < arguments . length; i++)

if (maxDepth > 0) {

// if there is depth make another GeneFunction
try {

arguments [i] = new GeneFunctionFull (maxDepth,
f .argTypes [i]

,

gpParameters

,

adf Index) ,-

}

catch (TypeException e) {

gpParameters . observer . diagnosticUpdate

(

"GeneFunctionFull " + e .getMessage ( ) )

;

arguments [i] = new
GeneTerminal (maxDepth, f . argTypes [i]

,

gpParameters, adf Index)

;

}
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} else // else make a GeneTerminal
arguments [i] = new GeneTerminal (maxDepth,

f .argTypes [i]

,

gpParameters

,

adf Index)

;

}

}//End GeneFunctionFull

5. GENEFUNCTIONGROW

Copyright Adil Qureshi - 1997
This code is part of gpsys Release 1.1
and is released for non-commercial use only.
Questions, comments etc should be forwarded to :-

Adil Qureshi
University College London,
Department of Computer Science,
Gower St,

London WC1E 6BT, UK.

Tel: + 44 (0)171 380 7777 x4436
Fax: +44 (0)171 387 1397
email: A.Qureshi@cs.ucl.ac.uk
URL : http://www.cs.ucl.ac.uk/staff7A.Qureshi/

Modified by Captain Loretta Vandenberg
Naval Postgraduate School
Monterey, CA 93943

package gpsys

;

* A GeneFunc t ionGrow is a GeneFunction created using the Grow method.
* In the Grow method, the Gene tree is such that, along any branch,
* the probability of encountering a Terminal is equal to the
* probability of encountering a Function.
*

* ©version 1.1, 3 0th June '97
* ©author <a href = "mailto : A. Qureshi@cs .ucl . ac .uk" >Adil Qureshi</a>
* <address>Department of Computer Science, </address>
* <address>University College London, </address>
* <address>Gower St , </address>
* <address>London WC1E 6BT, </address>
* <address>UK. </address>
*

* ©author <a href="mailto: shirley@cs .nps .navy .mil">Rett Vandenberg</a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey, CA 93943</address>
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*/

public class GeneFunctionGrow extends GeneFunction implements Cloneable
{

* Create a Gene tree using the Grow method. The Grow method
* tries to creates trees in which along any branch, the
* probability of encountering a Terminal is equal to the
* probability of enountering a Function.
*

* ©param maxDepth the maximum depth of the Gene
* tree to be generated.
* @param type the required return type of top
* node in the tree.
* ©param gpParameters the GP parameters for this run.
* ©param adflndex the index of the
* ChromosomeParameters to used.
* ©exception TypeException If a Function or Terminal of
* a required type could not be found.
*

*/

public GeneFunctionGrow ( int maxDepth, Type type,
GPParameters gpParameters, int adflndex)

throws TypeException {

// get an array of all functions of the required type
Function!] functionsOfType = gpParameters . adf [adflndex]

.

functionsOfTypeAtDepthGrow [maxDepth]

.

get (type)

;

if ( functionsOfType = = null) throw new TypeException

(

"no function of type " + type. toString ( ) + " at depth " +

maxDepth)

;

// then select a function at random from this array and
// assign to p
int code = gpParameters . rng .next Int () %functionsOfType. length;
code = (code < 0) ? -code : code;

//added by Rett Vandenberg to count the introns
if ( functionsOfType [code] . toString ( ) == "Nop" ) {

super . intron = true;
super . dominant = false;

} else if ( functionsOfType [code] . toString ( ) .startsWith( "R" ) ) {

super . dominant = false;
super. intron = false;

} else {

super . intron = false;
super . dominant = true;

if ( (gpParameters . rng .nextlnt { ) % 2) ==0) {

super. allele = 2; //double dominant
} else { super. allele = 1; }

}
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Function f = (Function) functionsOfType [code] . instance ()

;

p= f;

// now generate the arguments to this function
arguments = new Gene [ f . argTypes . length]

;

maxDepth--

;

// just for convenience
TypeToFunctionsTable typeToFunctions =

gpParameters . adf [adf Index]

.

functionsOfTypeAtDepthGrow [maxDepth] ,-

for (int i = ; i < arguments . length; i++){

// depth allowing choose a function or a

//terminal with a 50% chance for either
if ((maxDepth > 0) &&

( (gpParameters . rng. next Int ( ) % 2) == 0) &&
( typeToFunctions

.
get ( f . argTypes [i] ) != null)) {

try {

arguments [i] = new GeneFunctionGrow (maxDepth,
f . argTypes [ i ] ,

•

gpParameters

,

adflndex)

;

}

catch (TypeException e) {

gpParameters . observer . diagnosticUpdate

(

"GeneFunctionGrow " + e
.
getMessage ()) ;

arguments [i] = new GeneTerminal (maxDepth,
f .argTypes [i]

,

gpParameters

,

adflndex)

;

}

} else {

try {

arguments [i] = new GeneTerminal (maxDepth,
f . argTypes [i]

,

gpParameters

,

adflndex)

;

}

catch (TypeException e) {

gpParameters . observer . diagnosticUpdate

(

"GeneFunctionGrow " + e
.
getMessage ())

;

arguments [i] = new GeneFunctionGrow (maxDepth,
f .argTypes [i]

,

gpParameters

,

adflndex)

;

}

}

}

}//End GeneFunctionGrow
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6. XNO_TYPE

/*

Captain Loretta Vandenberg
*/

package gpsys .primitives

;

import gpsys .

*

;

* <pre>
* NO_TYPE XNo_Type
* </pre>
*

* XNo_Type is a Terminal representing a variable of Type No_Type

.

*

* ©see gpsys. Type
* @see gpsys . Primitive
* ©see gpsys .Terminal
*

* ©version 1.1, 26 Aug 99
* ©author <a href = "mailto : shirley©cs . nps . navy .mil " >Rett

Vandenberg< /a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey, CA 93943</address>
*/

public class XNo_Type extends Terminal {

* Holds the value of the variable.
*/

Type nothing;

* Construct a new variable.
*/

public XNo_Type() {

this. type = Type . NO_TYPE ,-

}

* Evaluates the variable, which returns its value.
*

* ©param i The variable being evaluated.
* ©return A long which is the value of the variable.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public final Type evaluateNo_Type (Individual i) {

//throws EvaluationException {

return Type . NO_TYPE

;

}
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/ * *

* Creates a copy of this Terminal.
*

* ©return Actully a reference to the same Terminal since there
* is no change in instance variables required.
*/

public final Primitive instance () {

return this;

}

/ * *

* Creates a String representing this Terminal

.

*

* ©return A String containing the name of this Terminal.
*/

public String toString() {

return "No_Type";

}

} / / End No_Type

7. NOP

/*

Loretta Vandenberg
*/

package gpsys .primitives

;

import gpsys .

*

;

* <pre>
* &lt;typeX&gt; Nop (

)

* </pre>
*

* Nop is a generic Function. It doesn't do anything,
* it can just fill a node.
*

* ©see gpsys. Type
* ©see gpsys . Primitive
* ©see gpsys .Terminal
*

* ©version 1.1, 22 Aug 99
* ©author <a href = "mail to : shirley©cs .nps .navy .mil">Rett

Vandenberg< / a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
*

*/

public class Nop extends Function {

/ * *
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* Construct a new Nop Function
*/

public Nop (Type type) {

this. type = type;
this . argTypes = new Type [2];

argTypes [ ] = type

;

argTypes [1] = type;

}

/ * *

* Used to return arguments of FLOAT Types

.

*

* ©param i The individual being evaluated.
* @param arguments The Gene tree representing the arguments
* ©return A float representing the sum of the arguments.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public final float evaluateFloat ( Individual i, Gene [ ] arguments)
throws EvaluationException {

return . Of

;

}

/ * *

* Used to return arguments of INT Types

.

*

* ©param i The individual being evaluated.
* @param arguments The Gene tree representing the arguments.
* ©return A float representing the sum of the arguments.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public final int evaluatelnt ( Individual i, Gene [ ] arguments)
throws EvaluationException {

return ;

}

//You can add more for the evaluation type needed. I only used
//these two.

* Creates an instance of this Nop object. The Type instantiation
* is preserved so that if an Nop is being cloned, the clone will
* also be nop instantiated.
*

* ©return A reference to this Object (yes the same object,
* since
* the type information is to be the same, there
* are therefore
* no instance variables to be modified.
*/

public final Primitive instance () {
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return this;

}

* Returns a String representation of this Function.
*

* ©return A String containing the name of the Function.
*/

public String toString() {

return "Nop"

;

}

}//End Nop

8. RMUL

/*

Captain Loretta Vandenberg
*/

package gpsys .primitives;

import gpsys.*;

* <pre>
* &lt; typeX&gt; RMul (&lt ; typeX&gt ; numl , &lt ; typeX&gt ; num2

)

* </pre>
*

* RMul is a generic function that returns the result of multiplying
* both arguments

.

* RMul needs to be Type instantiated during construction to work with
* particular argument Types. The supported argument Types include
* BYTE, SHORT, INT, LONG, FLOAT and DOUBLE.
*

* @see gpsys. Type
* @see gpsys . Primitive
* @see • gpsys . Function
*

* ©version 1.1, 1 Sep 9 9

* ©author <a href = "mailto : shirley@cs .nps .navy .mil" >Rett
Vandenberg< / a>

* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey , CA 93943</address>
*

*/

public class RMul extends Function {

* Constructs a RMul Function that works with the specified Type.
* The supported Types include BYTE, SHORT, INT, LONG, FLOAT and
* DOUBLE.
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* ©param type The Type of this RMul Function.
*/

public RMul (Type type) {

this. type = type;
argTypes = new Type [ 2 ]

;

argTypes [0] = type;
argTypes [1] = type;

}

* Used to multiply arguments of BYTE Types.
*

* @param i The individual being evaluated.
* @param arguments The Gene trees representing the
* arguments to be multiplied.
* ©return A byte representing the product of the arguments.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public final byte evaluateByte ( Individual i, Gene [ ] arguments)
throws EvaluationException {

return (byte) (arguments [ 0] . evaluateByte (i) *

arguments [1] . evaluateByte ( i ) )

;

}

* Used to multiply arguments of SHORT Types.
*

* ©param i The individual being evaluated.
* ©param arguments The Gene trees representing the
* arguments to be multiplied.
* ©return A short representing the product of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final short evaluateShort (Individual i, Gene [ ] arguments)
throws EvaluationException {

return (short) (arguments [ ]. evaluateShort ( i )
*

arguments [ 1 ] . evaluateShort ( i ) )

;

}

* Used to multiply arguments of INT Types.
*

* ©param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added

.

* ©return An int representing the product of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final int evaluatelnt ( Individual i, Gene [ ] arguments)
throws EvaluationException {
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return arguments [ 0] . evaluatelnt (i) *

arguments [ 1 ] . evaluatelnt ( i )

;

}

* Used to multiply arguments of LONG Types.
*

* @param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added.
* ©return A long representing the product of the arguments.
* ©exception EvaluationException If there is an
* evaluation failure.
*/

public final long evaluateLong (Individual i, Gene [ ] arguments)
throws EvaluationException {

return arguments [0] .evaluateLong (i) '
*

arguments [ 1 ] . evaluateLong ( i )

;

}

* Used to multiply arguments of FLOAT Types.
*

* ©param i The individual being evaluated.
* @param arguments The Gene trees representing the
* arguments to be multiplied.
* ©return A float representing the product of the arguments

.

* ©exception EvaluationException If there is an
* evaluation failure.
*/

public final float evaluateFloat (Individual i, Gene [ ] arguments)
throws EvaluationException {

return arguments [ 0] . evaluateFloat ( i )
*

arguments [1] . evaluateFloat ( i )

;

}

* Used to multiply arguments of DOUBLE Types.
*

* ©param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added.
* ©return A double representing the product of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final double evaluateDouble (Individual i, Gene [ ] arguments)
throws EvaluationException {

return arguments [0] .evaluateDouble (i) *

arguments [1] .evaluateDouble ( i)

;

}
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/ * *

* Creates an instance of this Mul object. The Type instantiation
* is
* preserved so that if an INT Mul is being cloned, the clone will
* also be INT instantiated.
*

* ©return A reference to this Object (yes the same object,
* since
* the type information is to be the same, there are
* therefore no instance variables to be modified.
*/

public final Primitive instance () {

return this;

}

/ * *

* Returns a String representation of this Function.
*

* ©return A String containing the name of the Function.
*/

public String toStringO {

return "RMul "

;

}

}//End RMul

9. RADD

/*

Captain Loretta Vandenberg
*/

package gpsys .primitives

;

import gpsys .

*

;

/ * *

* <pre>
* &lt; typeX&gt; RAdd (&lt ; typeX&gt ; numl , &lt ; typeX&gt ; num2 )

* </pre>
*

* RAdd is a generic function that returns the result of adding both
* arguments, but does not perform as efficiently as Add. It has
* been added to demonstrate the effect of dominant/recessive
* genes within a GP.
* RAdd needs to be Type instantiated during construction to work with
* particular argument Types. The supported argument Types include
* BYTE, SHORT, INT, LONG, FLOAT and DOUBLE.
*

* @see gpsys. Type
* @see gpsys . Primitive
* @see gpsys . Function
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* (Aversion 1.1, 1 Sep 99
* ©author <a href="mailto : shirley@cs .nps .navy .mil ">Rett

Vandenberg< / a>
* <address>Department of Computer Science</address>
* <address>Naval Postgraduate School</address>
* <address>Monterey , CA 93943</address>
*

*/

public class RAdd extends Function {

* Constructs an RAdd Function that works with the specified Type.
* The supported Types include BYTE, SHORT, INT, LONG, FLOAT and
* DOUBLE.
*

* ©param type The Type of this RAdd Function.
*/

public RAdd (Type type) {

this. type = type;
argTypes = new Type [2],

•

argTypes [0] = type;
argTypes [1] = type;

}

* Used to Add arguments of BYTE Types.
*

* ©param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added.
* ©return A byte representing the sum of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final byte evaluateByte ( Individual i, Gene [ ] arguments)
throws EvaluationException {

return (byte) (arguments [0] . evaluateByte (i) +

arguments [ 1 ] . evaluateByte ( i ) )

;

}

* Used to Add arguments of SHORT Types.
*

* ©param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added.
* ©return A short representing the sum of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final short evaluateShort (Individual i, Gene [ ] arguments)
throws EvaluationException {

return (short) (arguments [0] . evaluateShort ( i ) +
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arguments [ 1 ] . evaluateShort (i) )

;

}

* Used to Add arguments of INT Types

.

*

* @param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added.
* ©return An int representing the sum of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final int evaluatelnt ( Individual i, Gene [ ] arguments)
throws EvaluationException {

return arguments [0] . evaluatelnt ( i) +

arguments [1] .evaluatelnt (i) ;

'

}

* Used to Add arguments of LONG Types.
*

* ©param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added.
* ©return A long representing the sum of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final long evaluateLong (Individual i, Gene [ ] arguments)
throws EvaluationException {

return arguments [ ]. evaluateLong ( i ) +

arguments [ 1 ] . evaluateLong ( i )

;

}

* Used to Add arguments of FLOAT Types.
*

* ©param i The individual being evaluated.
* ©param arguments The Gene trees representing the arguments to be
* added.
* ©return A float representing the sum of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final float evaluateFloat ( Individual i, Gene [ ] arguments)
throws EvaluationException {

return arguments [0] . evaluateFloat (i) +

arguments [ 1 ] . evaluateFloat ( i )

;

}

* Used to Add arguments of DOUBLE Types.
*
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* @param i The individual being evaluated.
* @param arguments The Gene trees representing the arguments to be
* added.
* ©return A double representing the sum of the arguments.
* ©exception EvaluationException If there is an evaluation
* failure.
*/

public final double evaluateDouble ( Individual i, Gene [ ] arguments)
throws EvaluationException {

return arguments [ 0] . evaluateDouble ( i ) +

arguments [ 1 ] . evaluateDouble ( i)

;

}

* Creates an instance of this RAdd object. The Type instantiation
* is preserved so that if an INT RAdd is being cloned, the clone
* will also be INT instantiated.
*

* ©return A reference to this Object (yes the same object,
since

* the type information is to be the same, there are
* therefore
* no instance variables to be modified.
*/

public final Primitive instance () { return this; }

* Returns a String representation of this Function.
*

* ©return A String containing the name of the Function.
*/

public String toString ( ) { return "RAdd"; }

} / / End RAdd

10. GEOSERIES

/*

Loretta Vandenberg
*/

package gpsys . series

;

import gpsys .

*

;

import java.io.*;

I
* *

* The user interface for the geometric series evaluation. This class
* also contains the main ( ) function to execute the application.
*

* ©version 1.1, 30th June '97

* ©author <a href =" mail to : shirley@cs .nps .navy .mil">Rett
Vandenberg</a>
* <address>Department of Computer Science, </address>
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* <address>Naval Postgraduate School</address>
* <address>Monterey, CA 93943</address>
*

* * /

public class GeoSeries implements GPObserver {

* The filePrefix to use when saving reports and generation states
* during
* evolution.
*/

String filePrefix;

* Construct the geometric series expansion user interface using the
* specified file prefix.
*

* @param filePrefix The file prefix to be used for saving reports
* and generation states.
*/

public GeoSeries (String filePrefix) { this . filePrefix = filePrefix;}

* If the filePrefix is null, just write a report of the current
* generation to the standard output. Otherwise, also append the
* report to the file "filePrefix.txt" and save the current
* generation to the file " filePrefix.pl .gzip"

.

*

* @param gpParameters The GP parameters used for this run.
* @param how How the generation was created. Can be
* either
* CREATION, FROMSTREAM or EVOLVED.
*/

public void generationUpdate (GPParameters gpParameters, int how) {

// if a file prefix was given, write the report to file and save
// the current generation. This need not be done if the
// generation was just loaded from file.
if ((filePrefix != null) && (how = = GPObserver . CREATION ||

how == GPObserver. EVOLVED) ) {

// try to save the current generation
try {

diagnosticUpdate (" Saving current generation...");
gpParameters . save ( filePrefix)

;

diagnosticUpdate (" Saved current generation.");
}

catch (lOException e) {

System. out .print In ( "gpParameters . save ( ) :
" + e) ;

System. exit (1 )

;

}

// try to write a report of the current population to file
try {

gpParameters . writeReport ( filePrefix, how ==

GPObserver .CREATION)

;

}
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catch (IOException e) {

System. out .println ( "gpParameters .writeReport ( ) :
" + e) ;

System. exit ( 1 )

;

}

}

// now write a report of the current population to the standard
// output
StringWriter sw = new StringWriter ()

;

PrintWriter pw = new PrintWriter (sw)

;

gpParameters .writeReport (pw, (how == GPObserver .CREATION) ||

(how == GPObserver .FROMSTREAM) )

;

System. out .print (sw. toString ( ) )

;

}

* We are not interested in this update, so we just ignore it.
*

* @param gpParameters the GP parameters used for this
run.

* @param i the Individual that has just been
created.

* @param creationlndex the index of the Individual in the
* population.
*

*/

public void individualUpdate (GPParameters gpParameters,
Individual i, int creationlndex) {}

/

We are not interested in this update, so we just ignore it.

gpParameters the GP parameters used for this

individuallndex the index of the created Individual
in the population,
how the Individual was created.creationMethod

Can
be either VIA_MUTATION or
VIA CROSSOVER.

* @param

* @param
*

* @param

*

*

*/

public void individualUpdate (GPParameters gpParameters,
int individuallndex, int creationlndex) {}

* Print the diagnostic message to the standard output.
*

* @param s The diagnostic message.
*/

public void diagnosticUpdate (String s) { System. out .println (s) ; }

* Print the exception and generate a stack trace on the standard
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* output

.

*

* @param e The exception that was genearted.
*/

public void exception (GPException e) {

System. out .print In (e.getMessage ( ) )

;

e.printStackTrace ( )

;

System. exit ( )

;

}

* The main() method of the geometric series application. This
* application may be invoked in any of the following ways.
* <pre>
* Java GeoSeries &lt ; filePrefix&gt

;

* Java GeoSeries &lt ; filePref ix&gt ; &lt ;
generations>

* Java GeoSeries &lt ; filePrefix&gt ; &lt;RNG seed>
* &lt ;population> &lt ; generations>
* Java GeoSeries &lt;RNG seed&gt; &lt ;population>
* & 1 1 ; genera t ions >

* </pre>
*

* The first instructs the application to restart from the last saved
* session using the files with the prefix specified. The second is
* the same as the first, except that the maximum number of
* generations is modified as specified. The third istructs the
* application to start a new run using the specifed file prefix for
* saves, and the specified parameters for the run. The last is the
* similar to the previous invocation except that nothing is saved to
* disk and is as a result very fast.
*/

public static void main (String [ ] argv) {

GeoSeriesGPParameters gpParameters = null;
String filePref ix = null;

// now read the command line arguments
switch (argv. length) {

case 1: // load entirely from saved session
case 2: // load from saved session but change the max

// generations
filePref ix = argv[0];
try {

System. out .println ( "Loading last saved generation...");
gpParameters = (GeoSeriesGPParameters)

GPParameters . load ( filePref ix)

;

if (gpParameters != null)
System. out .println ( "Loaded last saved

generation.
}

catch ( Java . io . IOException e) {

System. out .println ( "Loading problem :
" + e) ;

Sys tern . exi t ( 1 )

;

}
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catch (ClassNotFoundException e) {

System. out .println ( "Loading problem :
" + e)

;

Sys tem . exi t ( 1 )

;

}

if (argv. length ==2) {

int generations = Integer .parselnt (argvfl] )

;

gpParameters
.
generations = generations;

}

break;
case 3 : {

long rngSeed = Long .parseLong (argv[0] )

;

int population = Integer .parselnt (argv [1] )
,-

int generations = Integer .parselnt (argv [2 ])

;

gpParameters = new GeoSeriesGPParameters (rngSeed,
population, generations)

;

}

break;
case 4 : {

filePrefix = argv[0];
long rngSeed = Long. parseLong (argv [1] )

,-

int population = Integer .parselnt (argv [2 ])

;

int generations = Integer .parselnt (argv [ 3 ])

;

gpParameters = new GeoSeriesGPParameters (rngSeed,
population, generations);

}

break;
default:

System. out .println ( "Usage : GeoSeries <file>");
System. out .println (

" GeoSeries <file>
<generations>" )

;

System. out .println (

" GeoSeries " +

"<RNG seed> <population> <generations>" )

;

System. out .println (
" GeoSeries " +

"<file> <RNG seed> <population> <generations> " )

;

return;
}

// set the observer to be an instance of our user interface
gpParameters . observer = new GeoSeries ( filePrefix)

;

// create a new GP system
GPsys gpSys = new GPsys (gpParameters )

;

// and start evolving ! !

!

gpSys . evolve ( )

;

}

}//End GeoSeries
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11. GEOSERIESGPPPARAMETERS

/*

Loretta Vandenberg
*/

package gpsys . series

;

import gpsys .

*

;

import Java .util .Random ,-

* The GPParameters class for the geometric series problem. Any
* instance of this class has all the GP parameters correctly set.
*

* ©version 1.1, 17 Aug 99
* ©author <a href = "mailto : shirley@cs .nps .navy .mil ">Rett

Vandenberg< / a>
* <address>Department of Computer Science, </address>
* <address>Naval Postgraduate School</address>
* <address>Monterey, CA 93 943</address>

public class GeoSeriesGPParameters extends GPParameters {

* Constructs a GPParameters object for the geometric series
* expansion problem.
*

* @param seed The seed to be used for the random number generator.
* If a seed value of is supplied, a unique seed is
* generated using the current time.
* @param population The size of the population to be used.
* @param generations The maximum number of generations to be
* evolved.
*/

GeoSeriesGPParameters ( long seed, int population, int generations ) {

this .populationSize = population;
this

.
generations = generations;

// create a seed using the current time if the seed suppied is
if (seed == 0){rngSeed = System. currentTimeMillis ();

}

else {rngSeed = seed;

}

rng = new Random (rngSeed)

;

//this has to be modified for each run if wanting to change
pMutation = 0.0;
tournamentSize = 7;

adf = new ChromosomeParameters [1] ;

adf[0] = new GeoSeriesChromosomeParametersADFO (rng) ,-

fitness = new GeoSeriesFitness ( ) ;

}
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}//End GeoSeriesGPParameters

12. GEOSERIESFITNESS

/*

Loretta Vandenberg
*/

package gpsys . series

;

import gpsys .

*

;

import gpsys .primitives .*

;

* The Fitness class for the series expansion problem. The fitness is
* measured by the absolute value of the difference between the real
* function and the function generated by the GP system. The fitness

of
* one GP is is deemed better than another if either the error is
* smaller or if the error is equal, but the complexity is smaller.

The
* termination criteria is met when the error is zero. This problem
* involves finding the function :

-

* <pre>
* x^y + x^(y-l) + x~(y-2)... + x~2 + x + 1

* </pre>
*

* ©version 1.1, 15 Aug 99
* ©author <a href = "mailto : shirley@cs .nps .navy .mil ">Rett

Vandenberg</a>
* <address>Department of Computer Science , </address>
* <address>Naval Postgraduate School</address>
* <address>Monterey, CA 93943</address>

public class GeoSeriesFitness extends Fitness {

* The error between the ideal function and the GP.

•

*/

double fitness;

* The complexity of the GP i.e. the number of Genes it contains.
*/

int complexity;

* The minimum value of x to be used for testing the evolved
* function.
*/

public static float from = 0.0;

* The maximum value of x to be used for testing the evolved
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* function.
*/

public static float to = 10.0;

* The number of samples used to test the evolved function.
*/

public static int samples = 50;

/ * *

* Construct a Fitness object with default Fitness.
*/

public GeoSeriesFitness ( ) {

fitness = 0.0;
complexity = 0;

}

* Constructs a Fitness object by evaluating an Individual.
*

* @param gpParameters The GP parameters for this run.
* @param i The individual to be evaluated.
*/

public GeoSeriesFitness (GPParameters gpParameters, Individual i)

complexity = i . complexity ()

;

// calculate the raw fitness

fitness = 0.0;
float step = (to - from) / samples;

// xFloat is reference to the XFloat Terminal used to

// generate ADF0

.

XFloat xFloat = (XFloat)

i . adf [ ] .
gpParameters . adf [ ] . terminals [ ]

;

for (float j = from; j < = to; j += step) {

xFloat .set ( j ) ;

float guess = 0.0f;

int power = gpParameters . rng .next Int ()

;

float real;

for (int pow = power; pow > = 0; pow--) {

real += pow( j ,
power)

;

}

//add the 1

real += 1.0;

try {

guess = i . evaluateFloat ( )

;

fitness += Math. abs (real - guess);
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}

catch (DivideByZeroException e) {

//a divide by zero error is really bad
// so don't bother with the remaining tests
fitness = Float .MAX_VALUE

;

break;

}

catch (GPException e) {

gpParameters . observer . exception ( e )

;

}

//subtract from fitness for recessives
//in this case, one would add
//fitness += i . recessives ,-

• *

* Adds a fitness value to this fitness value.
*

* @param f the fitness value to be added.
*/

public void add(Fitness f) {

fitness += ( (GeoSeriesFitness) f) . fitness;
complexity += ( (GeoSeriesFitness) f) . complexity

;

recessives += ( (GeoSeriesFitness) f j .recessives;
};

* Added by Rett Vandenberg
* Subtracts a fitness value to this fitness value.
*

* @ param f the fitness value to be subtracted.
*/

public void subtract (Fitness f) {

fitness -=
( (GeoSeriesFitness) f) . fitness;

complexity += ( (GeoSeriesFitness) f) . complexity;
recessives += ( (GeoSeriesFitness) f) . recessives

;

}

/ * *

* Divide the fitness by the specified integer. This is used by
* the GP system to calculate the average fitness of the
* population.
*

* @param divisor the integer to divide the fitness by.
*/

public void divide (int divisor) {

fitness /= divisor;
complexity /= divisor;

}

/ * *
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* Tests if this fitness value is greater than another fitness
* value.
*

* @param f the fitness with which to compare.
* ©return true if f has higher fitness, false otherwise.
*/

public boolean greaterThan (Fitness f) {

if (fitness < ( (GeoSeriesFitness) f) . fitness)
return true;

if (fitness --
( (GeoSeriesFitness) f) . fitness)

return complexity <

( (GeoSeriesFitness) f ) .complexity;
return false;

}

* Tests if this fitness is less than another fitness.
*

* @param f the fitness with which to compare.
* ©return true if f has less fitness, false otherwise.
*/

public boolean lessThan (Fitness f) {

if (fitness > ( (GeoSeriesFitness) f) . fitness)
return true;

if (fitness ==
( (GeoSeriesFitness) f) . fitness)

return complexity >

( (GeoSeriesFitness) f ) . complexity;
return false

;

}

* Tests if this fitness is equal to another fitness.
*

* @param f the fitness with which to compare.
* ©return true if f has the same fitness, false otherwise.
*/

public boolean equals (Fitness f) {

return
(fitness ==

( (GeoSeriesFitness) f) . fitness) &&

(complexity ==
( (GeoSeriesFitness ) f) .complexity) ;

}

* Creates a new instance of the Fitness object with a default
* fitness

.

*

* ©return an instance of a Fitness object with default fitness
*/

public Fitness instance () {

return new GeoSeriesFitness ( )

;

}

* Creates a new instance of the Fitness object which represents
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* the fitness of the specified individual.
*

* @param gpParameters the parameters for this GP run.
* ©param i the individual to be evaluated.
* ©return The Fitness of the specified individual.
*/

public Fitness instance (GPParameters gpParameters, Individual i)

return new GeoSeriesFitness (gpParameters , i);

/ * *

* Tests whether this fitness meets the termination criteria.
*

* ©return true if the termination criteria has been met, false
* otherwise.
*/

public boolean terminationCondition( ) {return fitness == 0;}

/ * *

* Converts the fitness into a String suitable for printing.
*

* ©return A String representing the fitness.
*/

public String toStringO {

return fitness + ",";// + complexity ;

//when testing
//return "Fitness( " + fitness + "," + complexity + ")";

}

}//End GeoSeriesFitness

13. GEOSERIESCHROMOSOMEPARAMETERSADF0

/*

Loretta Vandenberg
*/

package gpsys . series

;

import java .util .Random,

•

import gpsys.*;
import gpsys .primitives .*

;

i * *

* The Chromosome parameters for ADFO (the result producing branch) of
* the series expansion problem.
*

* ADFO has the following Function and Terminal sets.
*

* <pre>
* Functions = {Add, Mult, RAdd, RMul, Nop}
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* Terminals = {X, 1}
* </pre>
*

* ©version 1.1, 3 0th June '97

* ©author <a href = "mail to : shirley@cs .nps .navy.mil ">Rett
Vandenberg< / a>

* <address>Department of Computer Science , </address>
* <address>Naval Postgraduate School</address>
* <address>Monterey , CA 93943</address>
*/

public class GeoSeriesChromosomeParametersADFO extends
ChromosomeParameters {

* Create the ChromosomeParameters object for ADFO.
*/

public GeoSeriesChromosomeParametersADFO (Random rng) {

maxDepth = 9

;

maxDepthAtCreation = 7

;

maxDepthMutation = 3

;

// the return type of the Chromosome when it is evaluated
type = Type. FLOAT;

// the types used by this chromosome
types = new Type [2]

;

types [0] = Type. FLOAT ,-

types [1] = Type. BOOLEAN;
//types [2] = Type . NO_TYPE

;

//define the function set
functions = new Function [5];

functions [0] = new Add ( Type . FLOAT )

;

functions [1] = new Mul (Type . FLOAT)

;

functions[2] = new RAdd ( Type . FLOAT )

;

functions[3] = new RMul (Type . FLOAT)

;

functions[4] = new Nop (Type . FLOAT)

;

// define the terminal set
terminals = new Terminal [2];

terminals[0] = new XFloat ( )

;

terminals[l] = new One ( Type . FLOAT )

;

/ /terminals [2 ] = new XNo_Type ( )

;

createMethod = CREATE RAMP HALF AND_HALF;

} / /GeoSeriesChromosomeParametersADFO
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